A323867 Number of aperiodic arrays of positive integers summing to n.
1, 1, 1, 5, 11, 33, 57, 157, 303, 683, 1358, 2974, 5932, 12560, 25328, 52400, 106256, 217875, 441278, 899955, 1822703, 3701401, 7491173, 15178253, 30691135, 62085846, 125435689, 253414326, 511547323, 1032427635, 2082551931, 4199956099, 8466869525, 17064777665
Offset: 0
Keywords
Examples
The a(5) = 33 arrays: 5 14 23 32 41 113 122 131 212 221 311 1112 1121 1211 2111 . 1 2 3 4 11 11 12 21 4 3 2 1 12 21 11 11 . 1 1 1 2 2 3 1 2 3 1 2 1 3 2 1 2 1 1 . 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
GAP
List([0..30], A323867); # See A323861 for code; Andrew Howroyd, Aug 21 2019
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&]; apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; Table[Length[Union@@Table[Select[ptnmats[k],apermatQ],{k,Times@@Prime/@#&/@IntegerPartitions[n]}]],{n,15}]
Extensions
Terms a(16) and beyond from Andrew Howroyd, Aug 21 2019
Comments