A323869 Number of aperiodic matrices of size n whose entries cover an initial interval of positive integers.
1, 4, 24, 212, 1080, 18672, 94584, 2182752, 21261708, 408988080, 3245265144, 168549358368, 1053716696760, 42565371692592, 921132763909200, 26578273403903040, 260741534058271800, 20313207979498492344, 185603174638656822264, 16066126777465282744800, 324499299994016295338064
Offset: 1
Keywords
Examples
The a(3) = 24 matrices: [123][132][213][312][231][321][122][211][112][221][121][212] . [1][1][2][3][2][3][1][2][1][2][1][2] [2][3][1][1][3][2][2][1][1][2][2][1] [3][2][3][2][1][1][2][1][2][1][1][2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
GAP
List([1..30], A323869); # See A323861 for code; Andrew Howroyd, Aug 21 2019
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}]; apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]; Table[Length[Select[nrmmats[n],apermatQ]],{n,6}]
Formula
a(n) = n*A323871(n). - Andrew Howroyd, Aug 21 2019
Extensions
Terms a(9) and beyond from Andrew Howroyd, Aug 21 2019
Comments