A323873 Irregular triangle of 11^k mod prime(n).
1, 1, 2, 1, 1, 4, 2, 0, 1, 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6, 1, 11, 2, 5, 4, 10, 8, 3, 16, 6, 15, 12, 13, 7, 9, 14, 1, 11, 7, 1, 11, 6, 20, 13, 5, 9, 7, 8, 19, 2, 22, 12, 17, 3, 10, 18, 14, 16, 15, 4, 21, 1, 11, 5, 26, 25, 14, 9, 12, 16, 2, 22, 10, 23, 21, 28
Offset: 1
Examples
The first 9 rows are: 1; 1, 2; 1; 1, 4, 2; 0; 1, 11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6; 1, 11, 2, 5, 4, 10, 8, 3, 16, 6, 15, 12, 13, 7, 9, 14; 1, 11, 7; 1, 11, 6, 20, 13, 5, 9, 7, 8, 19, 2, 22, 12, 17, 3, 10, 18, 14, 16, 15, 4, 21; ...
Links
- Alois P. Heinz, Rows n = 1..120, flattened
Crossrefs
Programs
-
GAP
A000040:=Filtered([1..350],IsPrime);; p:=5;; R:=List([1..Length(A000040)],n->OrderMod(A000040[p],A000040[n]));; a1:=List([1..p-1],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])));; a:=Flat(Concatenation(a1,[0],List([p+1..2*p],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])))));; Print(a);
-
Maple
T:= n-> (p-> `if`(p=11, 0, seq(11&^k mod p, k=0..numtheory[order](11, p)-1)))(ithprime(n)): seq(T(n), n=1..15); # Alois P. Heinz, Feb 06 2019
-
Mathematica
Table[If[p == 11, {0}, Array[PowerMod[11, #, p] &, MultiplicativeOrder[11, p], 0]], {p, Prime@ Range@ 10}] (* Michael De Vlieger, Feb 25 2019 *)
Comments