A323874 Irregular triangle of 13^k mod prime(n).
1, 1, 1, 3, 4, 2, 1, 6, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 0, 1, 13, 16, 4, 1, 13, 17, 12, 4, 14, 11, 10, 16, 18, 6, 2, 7, 15, 5, 8, 9, 3, 1, 13, 8, 12, 18, 4, 6, 9, 2, 3, 16, 1, 13, 24, 22, 25, 6, 20, 28, 16, 5, 7, 4, 23, 9, 1, 13, 14, 27, 10, 6, 16, 22, 7, 29, 5
Offset: 1
Examples
The first 10 rows are: 1 1 1, 3, 4, 2 1, 6 1, 2, 4, 8, 5, 10, 9, 7, 3, 6 0 1, 13, 16, 4 1, 13, 17, 12, 4, 14, 11, 10, 16, 18, 6, 2, 7, 15, 5, 8, 9, 3 1, 13, 8, 12, 18, 4, 6, 9, 2, 3, 16 1, 13, 24, 22, 25, 6, 20, 28, 16, 5, 7, 4, 23, 9
Crossrefs
Programs
-
GAP
A000040:=Filtered([1..350],IsPrime);; p:=6;; R:=List([1..Length(A000040)],n->OrderMod(A000040[p],A000040[n]));; a1:=List([1..p-1],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])));; a:=Flat(Concatenation(a1,[0],List([p+1..2*p],n->List([0..R[n]-1],k->PowerMod(A000040[p],k,A000040[n])))));; Print(a);
-
Maple
T:= n-> (p-> `if`(p=13, 0, seq(13&^k mod p, k=0..numtheory[order](13, p)-1)))(ithprime(n)): seq(T(n), n=1..15); # Alois P. Heinz, Feb 06 2019
-
Mathematica
With[{q = 13}, Table[If[p == q, {0}, Array[PowerMod[q, #, p] &, MultiplicativeOrder[q, p], 0]], {p, Prime@ Range@ 11}]] // Flatten (* Michael De Vlieger, Feb 25 2019 *)
Comments