cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A276154 a(n) = Shift primorial base representation (A049345) of n left by one digit (append one zero to the right, then convert back to decimal).

Original entry on oeis.org

0, 2, 6, 8, 12, 14, 30, 32, 36, 38, 42, 44, 60, 62, 66, 68, 72, 74, 90, 92, 96, 98, 102, 104, 120, 122, 126, 128, 132, 134, 210, 212, 216, 218, 222, 224, 240, 242, 246, 248, 252, 254, 270, 272, 276, 278, 282, 284, 300, 302, 306, 308, 312, 314, 330, 332, 336, 338, 342, 344, 420, 422, 426, 428, 432, 434, 450, 452, 456, 458, 462, 464, 480, 482, 486, 488
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Examples

			   n   A049345  with one zero           converted back
                appended to the right   to decimal = a(n)
---------------------------------------------------------
   0       0            00                     0
   1       1            10                     2
   2      10           100                     6
   3      11           110                     8
   4      20           200                    12
   5      21           210                    14
   6     100          1000                    30
   7     101          1010                    32
   8     110          1100                    36
   9     111          1110                    38
  10     120          1200                    42
  11     121          1210                    44
  12     200          2000                    60
  13     201          2010                    62
  14     210          2100                    66
  15     211          2110                    68
  16     220          2200                    72
		

Crossrefs

Complement: A276155.
Cf. A002110, A003961, A049345, A276085, A276086, A276151, A276152, A286629 [= a(A061720(n-1))], A324384 [= gcd(n, a(n))], A323879, A328770 (a subsequence).
Cf. also A276156, A328461, A328464.
Dispersion array and its transpose: A276943, A276945, with primorials divided out: A286623, A286625.
Analogous to A153880.

Programs

  • Mathematica
    nn = 75; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[#] <= nn &]]; Table[FromDigits[#, b] &@ Append[IntegerDigits[n, b], 0], {n, 0, nn}] (* Version 10.2, or *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ Append[f@ n, 0], {n, 0, 75}] (* Michael De Vlieger, Aug 26 2016 *)
  • PARI
    A276154(n) = A276085(A003961(A276086(n))); \\ Antti Karttunen, Mar 15 2021
    
  • PARI
    A276151(n) = { my(s=1); forprime(p=2, , if(n%p, return(n-s), s *= p)); };
    A276152(n) = { my(s=1); forprime(p=2, , if(n%p, return(s*p), s *= p)); };
    A276154(n) = if(!n,n,(A276152(n) + A276154(A276151(n)))); \\ Antti Karttunen, Mar 15 2021
    
  • Scheme
    (definec (A276154 n) (if (zero? n) n (+ (A276152 n) (A276154 (A276151 n)))))

Formula

a(0) = 0; for n >= 1, a(n) = A276152(n) + a(A276151(n)).
a(n) = A276085(A003961(A276086(n))). - Antti Karttunen, Mar 15 2021

A323878 Number of divisors d of n such that A276086(d) divides n.

Original entry on oeis.org

0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 3, 0, 1, 0, 2, 0, 4, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 7, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2019

Keywords

Crossrefs

Cf. A276086.
Cf. also A323068, A323069, A323879.

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A323878(n) = sumdiv(n,d,!(n%A276086(d)));

Formula

a(n) = Sum_{d|n} [A276086(d)|n], where [ ] is the Iverson bracket.

A324384 a(n) = gcd(n, A276154(n)), where A276154 is the primorial base left shift.

Original entry on oeis.org

0, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 11, 12, 1, 2, 1, 8, 1, 18, 1, 4, 7, 2, 1, 24, 1, 2, 1, 4, 1, 30, 1, 8, 1, 2, 7, 12, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 1, 52, 1, 6, 1, 56, 1, 2, 1, 60, 1, 2, 1, 16, 1, 6, 1, 4, 1, 14, 1, 24, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 1, 8, 1, 90, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 8, 1
Offset: 0

Views

Author

Antti Karttunen, Feb 26 2019

Keywords

Comments

For a very few primes, a(p) > 1 (then by necessity a(p) = p). In range 2 .. 2^25 there are three: 2, 11, 119039.

Crossrefs

Programs

Formula

a(n) = gcd(n, A276154(n)).

A323880 Number of divisors d > 1 of n such that A003415(d) divides n, where A003415 gives the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 3, 2, 2, 1, 5, 1, 2, 2, 3, 2, 3, 1, 3, 2, 4, 1, 5, 1, 2, 2, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 2, 3, 2, 2, 2, 6, 1, 3, 2, 4, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2019

Keywords

Crossrefs

Cf. A003415.
Cf. also A173441, A323878, A323879.

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A323880(n) = sumdiv(n,d,(d>1)&&!(n%A003415(d)));

Formula

a(n) = Sum_{d|n, d>1} [A003415(d)|n], where [ ] is the Iverson bracket, and A003415 gives the arithmetic derivative of n.
Showing 1-4 of 4 results.