A323893 Dirichlet inverse of A048673, where A048673(n) = (A003961(n)+1) / 2, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
1, -2, -3, -1, -4, 4, -6, -2, -4, 5, -7, 3, -9, 7, 6, -4, -10, 8, -12, 4, 8, 8, -15, 8, -9, 10, -12, 6, -16, 5, -19, -8, 9, 11, 9, 8, -21, 13, 11, 11, -22, 11, -24, 7, 16, 16, -27, 20, -25, 18, 12, 9, -30, 32, 10, 17, 14, 17, -31, 6, -34, 20, 24, -16, 12, 14, -36, 10, 17, 20, -37, 16, -40, 22, 27, 12, 12, 20, -42, 28, -36, 23, -45, 12, 13
Offset: 1
Keywords
Links
Programs
-
PARI
up_to = 20000; DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 A048673(n) = (A003961(n)+1)/2; v323893 = DirInverse(vector(up_to,n,A048673(n))); A323893(n) = v323893[n]; -
PARI
memoA323893 = Map(); A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(d
A048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v))); \\ Antti Karttunen, Nov 30 2024
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA048673(n/d) * a(d).