A323894 Sum of A048673 and its Dirichlet inverse, A323893.
2, 0, 0, 4, 0, 12, 0, 12, 9, 16, 0, 26, 0, 24, 24, 37, 0, 46, 0, 36, 36, 28, 0, 76, 16, 36, 51, 56, 0, 58, 0, 114, 42, 40, 48, 121, 0, 48, 54, 106, 0, 94, 0, 66, 104, 60, 0, 223, 36, 92, 60, 86, 0, 220, 56, 166, 72, 64, 0, 164, 0, 76, 162, 349, 72, 112, 0, 96, 90, 136, 0, 354, 0, 84, 150, 116, 84, 148, 0, 312, 277, 88, 0, 260, 80, 96, 96
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
up_to = 65537; DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961 A048673(n) = (A003961(n)+1)/2; v323893 = DirInverse(vector(up_to,n,A048673(n))); A323893(n) = v323893[n]; A323894(n) = (A048673(n)+A323893(n));
Formula
For n > 1, a(n) = -Sum_{d|n, 1A048673(n/d) * A323893(d). - Antti Karttunen, Apr 20 2022
Comments