cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A349386 a(n) = A349384(n) + A349385(n).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 3, 4, 6, 0, 2, 0, 10, 12, 7, 0, 0, 0, 3, 20, 12, 0, -4, 9, 16, 16, 5, 0, -36, 0, 15, 24, 18, 30, -10, 0, 22, 32, -6, 0, -60, 0, 6, 0, 28, 0, -20, 25, -3, 36, 8, 0, -20, 36, -10, 44, 30, 0, -48, 0, 36, 0, 31, 48, -72, 0, 9, 56, -90, 0, -32, 0, 40, -6, 11, 60, -96, 0, -30, 52, 42, 0, -80, 54, 46, 60
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Crossrefs

Programs

Formula

a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A349384(d) * A349385(n/d). [As the sequences are Dirichlet inverses of each other]

A336840 Inverse Möbius transform of A048673.

Original entry on oeis.org

1, 3, 4, 8, 5, 14, 7, 22, 17, 18, 8, 42, 10, 26, 26, 63, 11, 65, 13, 55, 38, 30, 16, 124, 30, 38, 80, 81, 17, 100, 20, 185, 44, 42, 50, 206, 22, 50, 56, 164, 23, 148, 25, 94, 127, 62, 28, 368, 68, 117, 62, 120, 31, 316, 58, 244, 74, 66, 32, 318, 35, 78, 189, 550, 74, 172, 37, 133, 92, 196, 38, 626, 41, 86, 174, 159
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Arithmetic mean of the number of divisors (A000005) and prime-shifted sigma (A003973), thus a(n) is the average between the number of and the sum of divisors of A003961(n).
The local minima occur on primes p, where p/2 < a(p) <= (p+1).

Crossrefs

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A336840(n) = sumdiv(n,d,A048673(d));
    
  • PARI
    A336840(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(numdiv(n)+sigma(factorback(f))); };

Formula

a(n) = Sum_{d|n} A048673(d).
a(n) = (1/2) * (A000005(n) + A003973(n)).
a(n) = A113415(A003961(n)). - Antti Karttunen, Jun 01 2022
a(n) = A349371(A003961(n)) = A364063(A048673(n)). - Antti Karttunen, Nov 30 2024

A349385 Dirichlet convolution of A048673 with the Dirichlet inverse of A003961, where A003961 is fully multiplicative with a(p) = nextprime(p), and A048673(n) = (1+A003961(n))/2.

Original entry on oeis.org

1, -1, -2, -1, -3, 4, -5, -1, -2, 6, -6, 4, -8, 10, 12, -1, -9, 4, -11, 6, 20, 12, -14, 4, -3, 16, -2, 10, -15, -24, -18, -1, 24, 18, 30, 4, -20, 22, 32, 6, -21, -40, -23, 12, 12, 28, -26, 4, -5, 6, 36, 16, -29, 4, 36, 10, 44, 30, -30, -24, -33, 36, 20, -1, 48, -48, -35, 18, 56, -60, -36, 4, -39, 40, 12, 22, 60
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Convolving this with A003973 gives A336840.

Crossrefs

Cf. A003961, A048673, A346234, A349384 (Dirichlet inverse), A349386 (sum with it).
Cf. also A003973, A336840.

Programs

Formula

a(n) = Sum_{d|n} A048673(n/d) * A346234(d).
a(n) = A349386(n) - A349384(n).

A349397 Dirichlet convolution of A064216 with the Dirichlet inverse of its inverse permutation.

Original entry on oeis.org

1, 0, 0, 0, 0, -1, 5, -8, 0, 6, 3, -2, 0, -19, 5, 4, 4, -20, 19, -22, -6, 15, -3, 8, 0, 0, -16, -16, 18, -24, 40, -70, -9, 24, -21, 8, 50, -55, -8, 24, -6, 31, 15, -58, -20, 17, 31, -92, -2, -70, 37, 24, 0, 20, 49, 18, -6, -26, 13, -33, 15, -62, -158, -20, 22, -15, 49, -130, 67, 48, 49, -58, 29, -112, -4, 60, -73, -16
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2021

Keywords

Comments

Dirichlet convolution of A064216 with A323893, which is the Dirichlet inverse of A048673. Therefore, convolving A048673 with this sequence gives A064216.
Note how for n = 1 .. 35, a(n) = -A349398(n).

Crossrefs

Cf. A003961, A048673, A064216, A064989, A323893, A349398 (Dirichlet inverse), A349399 (sum with it), A349384.
Cf. also pairs A349376, A349377 and A349613, A349614 for similar constructions.

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
    A064216(n) = { my(f = factor(n+n-1)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    memoA323893 = Map();
    A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(dA048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v)));
    A349397(n) = sumdiv(n,d,A064216(n/d)*A323893(d));

Formula

a(n) = Sum_{d|n} A064216(n/d) * A323893(d).

A349381 Dirichlet convolution of A003961 with A349125 (Dirichlet inverse of A064989), where A003961 and A064989 are fully multiplicative sequences that shift the prime factorization of n one step towards larger and smaller primes respectively.

Original entry on oeis.org

1, 2, 3, 6, 4, 6, 6, 18, 15, 8, 6, 18, 6, 12, 12, 54, 6, 30, 6, 24, 18, 12, 10, 54, 28, 12, 75, 36, 8, 24, 8, 162, 18, 12, 24, 90, 10, 12, 18, 72, 6, 36, 6, 36, 60, 20, 10, 162, 66, 56, 18, 36, 12, 150, 24, 108, 18, 16, 8, 72, 8, 16, 90, 486, 24, 36, 10, 36, 30, 48, 6, 270, 8, 20, 84, 36, 36, 36, 10, 216, 375, 12
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Multiplicative because both A003961 and A349125 are.
Convolving this with A349127 gives A003972.

Crossrefs

Cf. A003961, A064989, A349125, A349382 (Dirichlet inverse), A349383 (sum with it).
Cf. also A003972, A349127, and A349355, A349356 and A349384, A349385, and A349387.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A349125(n) = (moebius(n)*A064989(n));
    A349381(n) = sumdiv(n,d,A003961(n/d)*A349125(d));

Formula

a(n) = Sum_{d|n} A003961(n/d) * A349125(d).
a(n) = A349383(n) - A349382(n).

A349572 Dirichlet convolution of A000027 (identity function) with the Dirichlet inverse of A048673.

Original entry on oeis.org

1, 0, 0, -1, 1, -2, 1, -4, -4, -3, 4, -4, 4, -5, -6, -12, 7, -6, 7, -7, -10, -6, 8, -6, -4, -8, -24, -11, 13, -2, 12, -32, -12, -9, -14, -4, 16, -11, -16, -13, 19, -2, 19, -16, -22, -14, 20, -4, -18, -15, -18, -20, 23, -10, -14, -19, -22, -15, 28, 14, 27, -18, -34, -80, -20, -8, 31, -25, -28, -8, 34, 14, 33, -20
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2021

Keywords

Comments

Also Dirichlet convolution of A349384 with A349388.

Crossrefs

Cf. A000027, A048673, A323893, A349384, A349388, A349571 (Dirichlet inverse).
Cf. also A349397.

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * sinv[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
    memoA323893 = Map();
    A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(dA048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v)));
    A349572(n) = sumdiv(n,d,d*A323893(n/d));

Formula

a(n) = Sum_{d|n} d * A323893(n/d).
a(n) = Sum_{d|n} A349384(d) * A349388(n/d).
Showing 1-6 of 6 results.