A378520 Dirichlet inverse of A336840, where A336840 is the inverse Möbius transform of A048673.
1, -3, -4, 1, -5, 10, -7, -1, -1, 12, -8, -2, -10, 16, 14, -2, -11, 5, -13, -2, 18, 18, -16, 6, -5, 22, -8, -2, -17, -20, -20, -4, 20, 24, 20, 1, -22, 28, 24, 8, -23, -20, -25, -2, 11, 34, -28, 14, -19, 18, 26, -2, -31, 32, 22, 12, 30, 36, -32, 4, -35, 42, 17, -8, 26, -20, -37, -2, 36, -14, -38, 3, -41, 46, 26, -2, 26
Offset: 1
Keywords
Links
Programs
-
PARI
A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; }; A336840(n) = sumdiv(n,d,A048673(d)); memoA378520 = Map(); A378520(n) = if(1==n,1,my(v); if(mapisdefined(memoA378520,n,&v), v, v = -sumdiv(n,d,if(d
A336840(n/d)*A378520(d),0)); mapput(memoA378520,n,v); (v)));
Comments