cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A378520 Dirichlet inverse of A336840, where A336840 is the inverse Möbius transform of A048673.

Original entry on oeis.org

1, -3, -4, 1, -5, 10, -7, -1, -1, 12, -8, -2, -10, 16, 14, -2, -11, 5, -13, -2, 18, 18, -16, 6, -5, 22, -8, -2, -17, -20, -20, -4, 20, 24, 20, 1, -22, 28, 24, 8, -23, -20, -25, -2, 11, 34, -28, 14, -19, 18, 26, -2, -31, 32, 22, 12, 30, 36, -32, 4, -35, 42, 17, -8, 26, -20, -37, -2, 36, -14, -38, 3, -41, 46, 26, -2, 26
Offset: 1

Views

Author

Antti Karttunen, Nov 30 2024

Keywords

Crossrefs

Möbius transform of A323893.
Dirichlet inverse of A336840.

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A336840(n) = sumdiv(n,d,A048673(d));
    memoA378520 = Map();
    A378520(n) = if(1==n,1,my(v); if(mapisdefined(memoA378520,n,&v), v, v = -sumdiv(n,d,if(dA336840(n/d)*A378520(d),0)); mapput(memoA378520,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA336840(n/d) * a(d).
a(n) = Sum_{d|n} A008683(n/d)*A323893(d).
a(n) = A349915(A003961(n)).

A048673 Permutation of natural numbers: a(n) = (A003961(n)+1) / 2 [where A003961(n) shifts the prime factorization of n one step towards larger primes].

Original entry on oeis.org

1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, 41, 10, 38, 12, 32, 28, 20, 15, 68, 25, 26, 63, 50, 16, 53, 19, 122, 33, 29, 39, 113, 21, 35, 43, 95, 22, 83, 24, 59, 88, 44, 27, 203, 61, 74, 48, 77, 30, 188, 46, 149, 58, 47, 31, 158, 34, 56, 138, 365, 60, 98, 36, 86, 73
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

Inverse of sequence A064216 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
From Antti Karttunen, Dec 20 2014: (Start)
Permutation of natural numbers obtained by replacing each prime divisor of n with the next prime and mapping the generated odd numbers back to all natural numbers by adding one and then halving.
Note: there is a 7-cycle almost right in the beginning: (6 8 14 17 10 11 7). (See also comments at A249821. This 7-cycle is endlessly copied in permutations like A250249/A250250.)
The only 3-cycle in range 1 .. 402653184 is (2821 3460 5639).
For 1- and 2-cycles, see A245449.
(End)
The first 5-cycle is (1410, 2783, 2451, 2703, 2803). - Robert Israel, Jan 15 2015
From Michel Marcus, Aug 09 2020: (Start)
(5194, 5356, 6149, 8186, 10709), (46048, 51339, 87915, 102673, 137205) and (175811, 200924, 226175, 246397, 267838) are other 5-cycles.
(10242, 20479, 21413, 29245, 30275, 40354, 48241) is another 7-cycle. (End)
From Antti Karttunen, Feb 10 2021: (Start)
Somewhat artificially, also this permutation can be represented as a binary tree. Each child to the left is obtained by multiplying the parent by 3 and subtracting one, while each child to the right is obtained by applying A253888 to the parent:
1
|
................../ \..................
2 3
5......../ \........4 8......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
14 13 11 7 23 9 17 18
41 10 38 12 32 28 20 15 68 25 26 63 50 16 53 19
etc.
Each node's (> 1) parent can be obtained with A253889. Sequences A292243, A292244, A292245 and A292246 are constructed from the residues (mod 3) of the vertices encountered on the path from n to the root (1).
(End)

Examples

			For n = 6, as 6 = 2 * 3 = prime(1) * prime(2), we have a(6) = ((prime(1+1) * prime(2+1))+1) / 2 = ((3 * 5)+1)/2 = 8.
For n = 12, as 12 = 2^2 * 3, we have a(12) = ((3^2 * 5) + 1)/2 = 23.
		

Crossrefs

Inverse: A064216.
Row 1 of A251722, Row 2 of A249822.
One more than A108228, half the terms of A243501.
Fixed points: A048674.
Positions of records: A029744, their values: A246360 (= A007051 interleaved with A057198).
Positions of subrecords: A247283, their values: A247284.
Cf. A246351 (Numbers n such that a(n) < n.)
Cf. A246352 (Numbers n such that a(n) >= n.)
Cf. A246281 (Numbers n such that a(n) <= n.)
Cf. A246282 (Numbers n such that a(n) > n.), A252742 (their char. function)
Cf. A246261 (Numbers n for which a(n) is odd.)
Cf. A246263 (Numbers n for which a(n) is even.)
Cf. A246260 (a(n) reduced modulo 2), A341345 (modulo 3), A341346, A292251 (3-adic valuation), A292252.
Cf. A246342 (Iterates starting from n=12.)
Cf. A246344 (Iterates starting from n=16.)
Cf. A245447 (This permutation "squared", a(a(n)).)
Other permutations whose formulas refer to this sequence: A122111, A243062, A243066, A243500, A243506, A244154, A244319, A245605, A245608, A245610, A245612, A245708, A246265, A246267, A246268, A246363, A249745, A249824, A249826, and also A183209, A254103 that are somewhat similar.
Cf. also prime-shift based binary trees A005940, A163511, A245612 and A244154.
Cf. A253888, A253889, A292243, A292244, A292245 and A292246 for other derived sequences.
Cf. A323893 (Dirichlet inverse), A323894 (sum with it), A336840 (inverse Möbius transform).

Programs

  • Haskell
    a048673 = (`div` 2) . (+ 1) . a045965
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Maple
    f:= proc(n)
    local F,q,t;
      F:= ifactors(n)[2];
      (1 + mul(nextprime(t[1])^t[2], t = F))/2
    end proc:
    seq(f(n),n=1..1000); # Robert Israel, Jan 15 2015
  • Mathematica
    Table[(Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n, {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2; \\ Antti Karttunen, Dec 20 2014
    
  • PARI
    A048673(n) = if(1==n,n,if(n%2,A253888(A048673((n-1)/2)),(3*A048673(n/2))-1)); \\ (Not practical, but demonstrates the construction as a binary tree). - Antti Karttunen, Feb 10 2021
    
  • Python
    from sympy import factorint, nextprime, prod
    def a(n):
        f = factorint(n)
        return 1 if n==1 else (1 + prod(nextprime(i)**f[i] for i in f))//2 # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A048673 n) (/ (+ 1 (A003961 n)) 2)) ;; Antti Karttunen, Dec 20 2014
    

Formula

From Antti Karttunen, Dec 20 2014: (Start)
a(1) = 1; for n>1: If n = product_{k>=1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k>=1} (p_{k+1})^(c_k)).
a(n) = (A003961(n)+1) / 2.
a(n) = floor((A045965(n)+1)/2).
Other identities. For all n >= 1:
a(n) = A108228(n)+1.
a(n) = A243501(n)/2.
A108951(n) = A181812(a(n)).
a(A246263(A246268(n))) = 2*n.
As a composition of other permutations involving prime-shift operations:
a(n) = A243506(A122111(n)).
a(n) = A243066(A241909(n)).
a(n) = A241909(A243062(n)).
a(n) = A244154(A156552(n)).
a(n) = A245610(A244319(n)).
a(n) = A227413(A246363(n)).
a(n) = A245612(A243071(n)).
a(n) = A245608(A245605(n)).
a(n) = A245610(A244319(n)).
a(n) = A249745(A249824(n)).
For n >= 2, a(n) = A245708(1+A245605(n-1)).
(End)
From Antti Karttunen, Jan 17 2015: (Start)
We also have the following identities:
a(2n) = 3*a(n) - 1. [Thus a(2n+1) = 0 or 1 when reduced modulo 3. See A341346]
a(3n) = 5*a(n) - 2.
a(4n) = 9*a(n) - 4.
a(5n) = 7*a(n) - 3.
a(6n) = 15*a(n) - 7.
a(7n) = 11*a(n) - 5.
a(8n) = 27*a(n) - 13.
a(9n) = 25*a(n) - 12.
and in general:
a(x*y) = (A003961(x) * a(y)) - a(x) + 1, for all x, y >= 1.
(End)
From Antti Karttunen, Feb 10 2021: (Start)
For n > 1, a(2n) = A016789(a(n)-1), a(2n+1) = A253888(a(n)).
a(2^n) = A007051(n) for all n >= 0. [A property shared with A183209 and A254103].
(End)
a(n) = A003602(A003961(n)). - Antti Karttunen, Apr 20 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/4) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 1.0319981... , where nextprime is A151800. - Amiram Eldar, Jan 18 2023

Extensions

New name and crossrefs to derived sequences added by Antti Karttunen, Dec 20 2014

A003973 Inverse Möbius transform of A003961; a(n) = sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.

Original entry on oeis.org

1, 4, 6, 13, 8, 24, 12, 40, 31, 32, 14, 78, 18, 48, 48, 121, 20, 124, 24, 104, 72, 56, 30, 240, 57, 72, 156, 156, 32, 192, 38, 364, 84, 80, 96, 403, 42, 96, 108, 320, 44, 288, 48, 182, 248, 120, 54, 726, 133, 228, 120, 234, 60, 624, 112, 480, 144, 128, 62, 624, 68
Offset: 1

Views

Author

Keywords

Comments

Sum of the divisors of the prime shifted n, or equally, sum of the prime shifted divisors of n. - Antti Karttunen, Aug 17 2020

Crossrefs

Cf. A000203, A000290 (positions of odd terms), A003961, A007814, A048673, A108228, A151800, A295664, A336840.
Permutation of A008438.
Used in the definitions of the following sequences: A326042, A336838, A336841, A336844, A336846, A336847, A336848, A336849, A336850, A336851, A336852, A336856, A336931, A336932.
Cf. also A003972.

Programs

  • Mathematica
    b[1] = 1; b[p_?PrimeQ] := b[p] = Prime[ PrimePi[p] + 1]; b[n_] := b[n] = Times @@ (b[First[#]]^Last[#] &) /@ FactorInteger[n]; a[n_] := Sum[ b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]  (* Jean-François Alcover, Jul 18 2013 *)
  • PARI
    aPrime(p,e)=my(q=nextprime(p+1));(q^(e+1)-1)/(q-1)
    a(n)=my(f=factor(n));prod(i=1,#f~,aPrime(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Jul 18 2013
    
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; \\ Antti Karttunen, Aug 06 2020
    
  • Python
    from math import prod
    from sympy import factorint, nextprime
    def A003973(n): return prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 05 2022

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = nextPrime(p). - David W. Wilson, Sep 01 2001
From Antti Karttunen, Aug 06-12 2020: (Start)
a(n) = Sum_{d|n} A003961(d) = Sum_{d|A003961(n)} d.
a(n) = A000203(A003961(n)) = A000593(A003961(n)).
a(n) = 2*A336840(n) - A000005(n) = 2*Sum_{d|n} (A048673(d) - (1/2)).
a(n) = A008438(A108228(n)) = A008438(A048673(n)-1).
a(n) = A336838(n) * A336856(n).
a(n) is odd if and only if n is a square.
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 3.39513795..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022, May 30 2025

Extensions

More terms from David W. Wilson, Aug 29 2001
Secondary name added by Antti Karttunen, Aug 06 2020

A113415 Expansion of Sum_{k>0} x^k/(1-x^(2k))^2.

Original entry on oeis.org

1, 1, 3, 1, 4, 3, 5, 1, 8, 4, 7, 3, 8, 5, 14, 1, 10, 8, 11, 4, 18, 7, 13, 3, 17, 8, 22, 5, 16, 14, 17, 1, 26, 10, 26, 8, 20, 11, 30, 4, 22, 18, 23, 7, 42, 13, 25, 3, 30, 17, 38, 8, 28, 22, 38, 5, 42, 16, 31, 14, 32, 17, 55, 1, 44, 26, 35, 10, 50, 26, 37, 8, 38, 20, 65, 11, 50, 30, 41
Offset: 1

Views

Author

Michael Somos, Oct 29 2005

Keywords

Comments

Arithmetic mean between the number of odd divisors (A001227) and their sum (A000593). This fact was essentially found by the algorithmic search of Jon Maiga's Sequence Machine, and is easily seen to be correct when compared to the PARI-program given by the original author. - Antti Karttunen, Dec 07 2021

Crossrefs

Quadrisection of A349916.

Programs

  • Mathematica
    Array[DivisorSum[#, If[OddQ[#], (# + 1)/2, 0] &] &, 79] (* Michael De Vlieger, Dec 08 2021 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)))

Formula

G.f.: Sum_{k>0} x^k/(1-x^(2k))^2 = Sum_{k>0} k x^(2k-1)/(1-x^(2k-1)).
a(n) = (1/2) * Sum_{d|n} (d+1)*(d mod 2). - Wesley Ivan Hurt, Nov 25 2021 [From PARI prog]
From Antti Karttunen, Dec 07 2021: (Start)
All these formulas, except the last, were found by the Sequence Machine in some form or another:
a(n) = (1/2) * (A000593(n)+A001227(n)).
a(n) = A069734(A000265(n)). [See either Rutherford's or Luschny's formula in A069734]
a(n) = A349371(n) / A001511(n).
a(n) = A349371(A000265(n)) = A336840(A064989(n)).
a(n) = a(2*n) = a(A000265(n)) = A349916(4*n).
(End)

A336841 Prime-shifted analog of A094471: a(n) = A336845(n) - A003973(n).

Original entry on oeis.org

0, 2, 4, 14, 6, 36, 10, 68, 44, 52, 12, 192, 16, 84, 92, 284, 18, 326, 22, 274, 148, 100, 28, 840, 90, 132, 344, 438, 30, 648, 36, 1094, 176, 148, 212, 1622, 40, 180, 232, 1192, 42, 1032, 46, 520, 802, 228, 52, 3324, 230, 654, 260, 684, 58, 2376, 252, 1896, 316, 244, 60, 3156, 66, 292, 1278, 4010, 332, 1224, 70, 766
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Comments

All terms are even because A003973 and A336845 match parity-wise. Also in the sum formulas, only even terms are summed (only one of which is zero).

Crossrefs

Cf. A336846 [= gcd(a(n), A003973(n))].
Twice the terms of A336854.

Programs

Formula

a(n) = A336845(n) - A003973(n) = (A000005(n)*A003961(n)) - A000203(A003961(n)).
a(n) = A094471(A003961(n)).
a(n) = Sum_{d|n} (A003961(n)-A003961(d)) = Sum_{d|A003961(n)} (A003961(n)-d).
a(n) = 2*A336854(n) = 2*Sum_{d|n} (A048673(n)-A048673(d)).
a(n) = ((A003961(n)+1)*A000005(n)) - 2*A336840(n).
a(n) = 2 * ((A000005(n)*A048673(n)) - A336840(n)).
a(n) = A000005(n) * (A336837(n)/A336839(n)) = A336837(n) * A336856(n).

A336839 Denominator of the arithmetic mean of the divisors of A003961(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Also denominator of A336841(n) / A000005(n).
All terms are odd because A336932(n) = A007814(A003973(n)) >= A295664(n) for all n.

Crossrefs

Cf. A336918 (positions of 1's), A336919 (of terms > 1).
Cf. A336837 and A336838 (numerators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336839(n) = denominator(sigma(A003961(n))/numdiv(n));

Formula

a(n) = denominator(A003973(n)/A000005(n)).
a(n) = d(n)/A336856(n) = d(n)/gcd(d(n),A003973(n)) = d(n)/gcd(d(n),A336841(n)), where d(n) is the number of divisors of n, A000005(n).
a(n) = A057021(A003961(n)).
For all primes p, and e >= 0, a(A000225(e)) = a(p^((2^e) - 1)) = 1. [See A336856]
It seems that for all odd primes p, and with the exponents e=5, 11, 17 or 23 (at least these), a(p^e) = 1.
It seems that a(27^((2^n)-1)) = A052940(n-1) for all n >= 1.

A349385 Dirichlet convolution of A048673 with the Dirichlet inverse of A003961, where A003961 is fully multiplicative with a(p) = nextprime(p), and A048673(n) = (1+A003961(n))/2.

Original entry on oeis.org

1, -1, -2, -1, -3, 4, -5, -1, -2, 6, -6, 4, -8, 10, 12, -1, -9, 4, -11, 6, 20, 12, -14, 4, -3, 16, -2, 10, -15, -24, -18, -1, 24, 18, 30, 4, -20, 22, 32, 6, -21, -40, -23, 12, 12, 28, -26, 4, -5, 6, 36, 16, -29, 4, 36, 10, 44, 30, -30, -24, -33, 36, 20, -1, 48, -48, -35, 18, 56, -60, -36, 4, -39, 40, 12, 22, 60
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Convolving this with A003973 gives A336840.

Crossrefs

Cf. A003961, A048673, A346234, A349384 (Dirichlet inverse), A349386 (sum with it).
Cf. also A003973, A336840.

Programs

Formula

a(n) = Sum_{d|n} A048673(n/d) * A346234(d).
a(n) = A349386(n) - A349384(n).

A336838 Numerator of the arithmetic mean of the divisors of A003961(n).

Original entry on oeis.org

1, 2, 3, 13, 4, 6, 6, 10, 31, 8, 7, 13, 9, 12, 12, 121, 10, 62, 12, 52, 18, 14, 15, 30, 19, 18, 39, 26, 16, 24, 19, 182, 21, 20, 24, 403, 21, 24, 27, 40, 22, 36, 24, 91, 124, 30, 27, 363, 133, 38, 30, 39, 30, 78, 28, 60, 36, 32, 31, 52, 34, 38, 62, 1093, 36, 42, 36, 130, 45, 48, 37, 310, 40, 42, 57, 52, 42, 54, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Ratio r(n) = a(n)/A336839(n) is multiplicative. For example r(3) = 3/1, r(4) = 13/3, thus r(12) = r(3)*r(4) = 13/1.
Conjecture: For all primes p with an odd exponent e, a(p^e) is a multiple of A048673(p). Note that q+1 is a divisor of (q+1)^e - sigma(q^e) = (q+1)^e - (1 + q + q^2 + ... + q^e) when e is odd, thus also A048673(p) = (q+1)/2 is, where q = A003961(p), thus the conjecture holds, unless the denominator (A336839) has enough prime factors of A048673(p).

Crossrefs

Cf. A336839 (denominators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336838(n) = numerator(sigma(A003961(n))/numdiv(n));

Formula

a(n) = A057020(A003961(n)).
a(n) = numerator(A003973(n)/A000005(n)).
a(n) = A003973(n) / A336856(n) = A003973(n) / gcd(A000005(n), A003973(n)).
a(p) = A048673(p) for all primes p.
a(p^3) = 2*A048673(p)^3 - 2*A048673(p)^2 + A048673(p). [The denominator A336839(p^3) = 1 for all p]

A349384 Dirichlet convolution of A003961 with the Dirichlet inverse of A048673, where A003961 is fully multiplicative with a(p) = nextprime(p), and A048673(n) = (1+A003961(n))/2.

Original entry on oeis.org

1, 1, 2, 2, 3, 0, 5, 4, 6, 0, 6, -2, 8, 0, 0, 8, 9, -4, 11, -3, 0, 0, 14, -8, 12, 0, 18, -5, 15, -12, 18, 16, 0, 0, 0, -14, 20, 0, 0, -12, 21, -20, 23, -6, -12, 0, 26, -24, 30, -9, 0, -8, 29, -24, 0, -20, 0, 0, 30, -24, 33, 0, -20, 32, 0, -24, 35, -9, 0, -30, 36, -36, 39, 0, -18, -11, 0, -32, 41, -36, 54, 0, 44
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2021

Keywords

Comments

Convolving this with A336840 gives A003973.

Crossrefs

Cf. A003961, A048673, A323893, A349385 (Dirichlet inverse), A349386 (sum with it).
Cf. also A003973, A336840, A349572.

Programs

Formula

a(n) = Sum_{d|n} A003961(n/d) * A323893(d).
a(n) = A349386(n) - A349385(n).

A336856 Prime-shifted analog of gcd(d(n), sigma(n)): a(n) = gcd(A000005(n), A003973(n)).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 4, 1, 4, 2, 6, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 8, 2, 8, 2, 2, 2, 4, 2, 2, 1, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 2, 4, 8, 2, 4, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4, 8, 2, 4, 4, 6, 4, 4, 4, 12, 2, 2, 2, 3, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Crossrefs

Programs

  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A336856(n) = gcd(numdiv(n), A003973(n));

Formula

a(n) = A009205(A003961(n)).
a(n) = gcd(A000005(n), A003973(n)) = gcd(A000005(n), A336841(n)).
a(n) = gcd(A000005(n), 2*A336840(n)).
a(n) = A003973(n) / A336838(n) = A000005(n) / A336839(n).
For n > 1, a(n) = A336841(n) / A336837(n).
For all primes p, and n >= 0, a(p^((2^n)-1)) = 2^n.
Showing 1-10 of 13 results. Next