cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003973 Inverse Möbius transform of A003961; a(n) = sigma(A003961(n)), where A003961 shifts the prime factorization of n one step towards the larger primes.

Original entry on oeis.org

1, 4, 6, 13, 8, 24, 12, 40, 31, 32, 14, 78, 18, 48, 48, 121, 20, 124, 24, 104, 72, 56, 30, 240, 57, 72, 156, 156, 32, 192, 38, 364, 84, 80, 96, 403, 42, 96, 108, 320, 44, 288, 48, 182, 248, 120, 54, 726, 133, 228, 120, 234, 60, 624, 112, 480, 144, 128, 62, 624, 68
Offset: 1

Views

Author

Keywords

Comments

Sum of the divisors of the prime shifted n, or equally, sum of the prime shifted divisors of n. - Antti Karttunen, Aug 17 2020

Crossrefs

Cf. A000203, A000290 (positions of odd terms), A003961, A007814, A048673, A108228, A151800, A295664, A336840.
Permutation of A008438.
Used in the definitions of the following sequences: A326042, A336838, A336841, A336844, A336846, A336847, A336848, A336849, A336850, A336851, A336852, A336856, A336931, A336932.
Cf. also A003972.

Programs

  • Mathematica
    b[1] = 1; b[p_?PrimeQ] := b[p] = Prime[ PrimePi[p] + 1]; b[n_] := b[n] = Times @@ (b[First[#]]^Last[#] &) /@ FactorInteger[n]; a[n_] := Sum[ b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]  (* Jean-François Alcover, Jul 18 2013 *)
  • PARI
    aPrime(p,e)=my(q=nextprime(p+1));(q^(e+1)-1)/(q-1)
    a(n)=my(f=factor(n));prod(i=1,#f~,aPrime(f[i,1],f[i,2])) \\ Charles R Greathouse IV, Jul 18 2013
    
  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; \\ Antti Karttunen, Aug 06 2020
    
  • Python
    from math import prod
    from sympy import factorint, nextprime
    def A003973(n): return prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 05 2022

Formula

Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = nextPrime(p). - David W. Wilson, Sep 01 2001
From Antti Karttunen, Aug 06-12 2020: (Start)
a(n) = Sum_{d|n} A003961(d) = Sum_{d|A003961(n)} d.
a(n) = A000203(A003961(n)) = A000593(A003961(n)).
a(n) = 2*A336840(n) - A000005(n) = 2*Sum_{d|n} (A048673(d) - (1/2)).
a(n) = A008438(A108228(n)) = A008438(A048673(n)-1).
a(n) = A336838(n) * A336856(n).
a(n) is odd if and only if n is a square.
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 3.39513795..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022, May 30 2025

Extensions

More terms from David W. Wilson, Aug 29 2001
Secondary name added by Antti Karttunen, Aug 06 2020

A336840 Inverse Möbius transform of A048673.

Original entry on oeis.org

1, 3, 4, 8, 5, 14, 7, 22, 17, 18, 8, 42, 10, 26, 26, 63, 11, 65, 13, 55, 38, 30, 16, 124, 30, 38, 80, 81, 17, 100, 20, 185, 44, 42, 50, 206, 22, 50, 56, 164, 23, 148, 25, 94, 127, 62, 28, 368, 68, 117, 62, 120, 31, 316, 58, 244, 74, 66, 32, 318, 35, 78, 189, 550, 74, 172, 37, 133, 92, 196, 38, 626, 41, 86, 174, 159
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Arithmetic mean of the number of divisors (A000005) and prime-shifted sigma (A003973), thus a(n) is the average between the number of and the sum of divisors of A003961(n).
The local minima occur on primes p, where p/2 < a(p) <= (p+1).

Crossrefs

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A336840(n) = sumdiv(n,d,A048673(d));
    
  • PARI
    A336840(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(numdiv(n)+sigma(factorback(f))); };

Formula

a(n) = Sum_{d|n} A048673(d).
a(n) = (1/2) * (A000005(n) + A003973(n)).
a(n) = A113415(A003961(n)). - Antti Karttunen, Jun 01 2022
a(n) = A349371(A003961(n)) = A364063(A048673(n)). - Antti Karttunen, Nov 30 2024

A336839 Denominator of the arithmetic mean of the divisors of A003961(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Also denominator of A336841(n) / A000005(n).
All terms are odd because A336932(n) = A007814(A003973(n)) >= A295664(n) for all n.

Crossrefs

Cf. A336918 (positions of 1's), A336919 (of terms > 1).
Cf. A336837 and A336838 (numerators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336839(n) = denominator(sigma(A003961(n))/numdiv(n));

Formula

a(n) = denominator(A003973(n)/A000005(n)).
a(n) = d(n)/A336856(n) = d(n)/gcd(d(n),A003973(n)) = d(n)/gcd(d(n),A336841(n)), where d(n) is the number of divisors of n, A000005(n).
a(n) = A057021(A003961(n)).
For all primes p, and e >= 0, a(A000225(e)) = a(p^((2^e) - 1)) = 1. [See A336856]
It seems that for all odd primes p, and with the exponents e=5, 11, 17 or 23 (at least these), a(p^e) = 1.
It seems that a(27^((2^n)-1)) = A052940(n-1) for all n >= 1.

A336856 Prime-shifted analog of gcd(d(n), sigma(n)): a(n) = gcd(A000005(n), A003973(n)).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 4, 1, 4, 2, 6, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 8, 2, 8, 2, 2, 2, 4, 2, 2, 1, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 2, 4, 8, 2, 4, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4, 8, 2, 4, 4, 6, 4, 4, 4, 12, 2, 2, 2, 3, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Crossrefs

Programs

  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A336856(n) = gcd(numdiv(n), A003973(n));

Formula

a(n) = A009205(A003961(n)).
a(n) = gcd(A000005(n), A003973(n)) = gcd(A000005(n), A336841(n)).
a(n) = gcd(A000005(n), 2*A336840(n)).
a(n) = A003973(n) / A336838(n) = A000005(n) / A336839(n).
For n > 1, a(n) = A336841(n) / A336837(n).
For all primes p, and n >= 0, a(p^((2^n)-1)) = 2^n.

A336918 Numbers k such that A000005(k) divides A003973(k); numbers k for which A336839(k) = 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 101
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Comments

Numbers k such that A003961(k) is in A003601. Numbers which become (or stay as) arithmetic numbers when all primes in their prime factorization are replaced by the next larger primes.
Numbers k for which A003973(k) is equal to A000005(k)*A336838(k).

Crossrefs

Positions of ones in A336839.
Cf. A336919 (complement).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA336918(n) = !(sigma(A003961(n))%numdiv(n));

A336837 Numerator of ratio A336841(n)/A000005(n).

Original entry on oeis.org

0, 1, 2, 14, 3, 9, 5, 17, 44, 13, 6, 32, 8, 21, 23, 284, 9, 163, 11, 137, 37, 25, 14, 105, 30, 33, 86, 73, 15, 81, 18, 547, 44, 37, 53, 1622, 20, 45, 58, 149, 21, 129, 23, 260, 401, 57, 26, 1662, 230, 109, 65, 114, 29, 297, 63, 237, 79, 61, 30, 263, 33, 73, 213, 4010, 83, 153, 35, 383, 100, 183, 36, 1715, 39, 81
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Crossrefs

Cf. A336839 (denominators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336841(n) = ((numdiv(n)*A003961(n)) - sigma(A003961(n)));
    A336837(n) = numerator(A336841(n)/numdiv(n));

Formula

a(n) = A336841(n) / A336856(n) = A336841(n) / gcd(A000005(n), A336841(n)).
Showing 1-6 of 6 results.