cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A336839 Denominator of the arithmetic mean of the divisors of A003961(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Also denominator of A336841(n) / A000005(n).
All terms are odd because A336932(n) = A007814(A003973(n)) >= A295664(n) for all n.

Crossrefs

Cf. A336918 (positions of 1's), A336919 (of terms > 1).
Cf. A336837 and A336838 (numerators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336839(n) = denominator(sigma(A003961(n))/numdiv(n));

Formula

a(n) = denominator(A003973(n)/A000005(n)).
a(n) = d(n)/A336856(n) = d(n)/gcd(d(n),A003973(n)) = d(n)/gcd(d(n),A336841(n)), where d(n) is the number of divisors of n, A000005(n).
a(n) = A057021(A003961(n)).
For all primes p, and e >= 0, a(A000225(e)) = a(p^((2^e) - 1)) = 1. [See A336856]
It seems that for all odd primes p, and with the exponents e=5, 11, 17 or 23 (at least these), a(p^e) = 1.
It seems that a(27^((2^n)-1)) = A052940(n-1) for all n >= 1.

A336838 Numerator of the arithmetic mean of the divisors of A003961(n).

Original entry on oeis.org

1, 2, 3, 13, 4, 6, 6, 10, 31, 8, 7, 13, 9, 12, 12, 121, 10, 62, 12, 52, 18, 14, 15, 30, 19, 18, 39, 26, 16, 24, 19, 182, 21, 20, 24, 403, 21, 24, 27, 40, 22, 36, 24, 91, 124, 30, 27, 363, 133, 38, 30, 39, 30, 78, 28, 60, 36, 32, 31, 52, 34, 38, 62, 1093, 36, 42, 36, 130, 45, 48, 37, 310, 40, 42, 57, 52, 42, 54, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Ratio r(n) = a(n)/A336839(n) is multiplicative. For example r(3) = 3/1, r(4) = 13/3, thus r(12) = r(3)*r(4) = 13/1.
Conjecture: For all primes p with an odd exponent e, a(p^e) is a multiple of A048673(p). Note that q+1 is a divisor of (q+1)^e - sigma(q^e) = (q+1)^e - (1 + q + q^2 + ... + q^e) when e is odd, thus also A048673(p) = (q+1)/2 is, where q = A003961(p), thus the conjecture holds, unless the denominator (A336839) has enough prime factors of A048673(p).

Crossrefs

Cf. A336839 (denominators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336838(n) = numerator(sigma(A003961(n))/numdiv(n));

Formula

a(n) = A057020(A003961(n)).
a(n) = numerator(A003973(n)/A000005(n)).
a(n) = A003973(n) / A336856(n) = A003973(n) / gcd(A000005(n), A003973(n)).
a(p) = A048673(p) for all primes p.
a(p^3) = 2*A048673(p)^3 - 2*A048673(p)^2 + A048673(p). [The denominator A336839(p^3) = 1 for all p]

A336919 Numbers k such that A000005(k) does not divide A003973(k); numbers k for which A336839(k) > 1.

Original entry on oeis.org

4, 9, 16, 18, 20, 32, 36, 44, 45, 48, 49, 64, 68, 72, 80, 81, 90, 98, 99, 100, 112, 116, 124, 144, 153, 160, 162, 164, 169, 176, 180, 192, 196, 198, 208, 220, 225, 236, 240, 244, 245, 252, 256, 261, 279, 284, 288, 292, 304, 306, 320, 324, 336, 338, 340, 352, 356, 360, 361, 369, 392, 396, 400, 404, 405, 428, 432, 441
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Comments

Numbers k such that A003961(k) is not in A003601, but in A049642.

Crossrefs

Cf. A336918 (complement).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA336919(n) = !!(sigma(A003961(n))%numdiv(n));

A336930 Numbers k such that the 2-adic valuation of A003973(k), the sum of divisors of the prime shifted k is equal to the 2-adic valuation of the number of divisors of k.

Original entry on oeis.org

1, 3, 4, 9, 11, 12, 13, 16, 23, 25, 27, 31, 33, 36, 37, 39, 44, 47, 48, 49, 52, 59, 64, 69, 71, 75, 81, 83, 89, 92, 93, 97, 99, 100, 107, 108, 109, 111, 117, 121, 124, 131, 132, 139, 141, 143, 144, 147, 148, 151, 156, 167, 169, 176, 177, 179, 188, 191, 192, 193, 196, 207, 208, 213, 225, 227, 229, 236, 239, 243, 249, 251
Offset: 1

Views

Author

Antti Karttunen, Aug 17 2020

Keywords

Comments

Numbers k for which A295664(k) is equal to A336932(k). Note that A295664(A003961(n)) = A295664(n).
Numbers k such that A003961(A007913(k)) [or equally, A007913(A003961(k))] is in A004613, i.e., has only prime divisors of the form 4k+1.
Subsequences include squares (A000290), and also primes p which when prime-shifted [as A003961(p)] become primes of the form 4k+1 (A002144), and all their powers as well as the products between these.

Crossrefs

Programs

  • PARI
    A007814(n) = valuation(n, 2);
    A336931(n) = { my(f=factor(n)); sum(i=1, #f~, (f[i, 2]%2) * (A007814(1+nextprime(1+f[i, 1]))-1)); };
    isA336930(n) = !A336931(n);
    
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA004613(n) = (1==(n%4) && 1==factorback(factor(n)[, 1]%4)); \\ After code in A004613.
    isA336930(n) = isA004613(A003961(core(n)));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint, nextprime, divisor_count
    def A336930_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(~(m:=prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p,e in factorint(n).items()))& m-1).bit_length()==(~(k:=int(divisor_count(n))) & k-1).bit_length(),count(max(startvalue,1)))
    A336930_list = list(islice(A336930_gen(),30)) # Chai Wah Wu, Jul 05 2022
Showing 1-4 of 4 results.