cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A336918 Numbers k such that A000005(k) divides A003973(k); numbers k for which A336839(k) = 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 101
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Comments

Numbers k such that A003961(k) is in A003601. Numbers which become (or stay as) arithmetic numbers when all primes in their prime factorization are replaced by the next larger primes.
Numbers k for which A003973(k) is equal to A000005(k)*A336838(k).

Crossrefs

Positions of ones in A336839.
Cf. A336919 (complement).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA336918(n) = !(sigma(A003961(n))%numdiv(n));

A336919 Numbers k such that A000005(k) does not divide A003973(k); numbers k for which A336839(k) > 1.

Original entry on oeis.org

4, 9, 16, 18, 20, 32, 36, 44, 45, 48, 49, 64, 68, 72, 80, 81, 90, 98, 99, 100, 112, 116, 124, 144, 153, 160, 162, 164, 169, 176, 180, 192, 196, 198, 208, 220, 225, 236, 240, 244, 245, 252, 256, 261, 279, 284, 288, 292, 304, 306, 320, 324, 336, 338, 340, 352, 356, 360, 361, 369, 392, 396, 400, 404, 405, 428, 432, 441
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Comments

Numbers k such that A003961(k) is not in A003601, but in A049642.

Crossrefs

Cf. A336918 (complement).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA336919(n) = !!(sigma(A003961(n))%numdiv(n));

A336840 Inverse Möbius transform of A048673.

Original entry on oeis.org

1, 3, 4, 8, 5, 14, 7, 22, 17, 18, 8, 42, 10, 26, 26, 63, 11, 65, 13, 55, 38, 30, 16, 124, 30, 38, 80, 81, 17, 100, 20, 185, 44, 42, 50, 206, 22, 50, 56, 164, 23, 148, 25, 94, 127, 62, 28, 368, 68, 117, 62, 120, 31, 316, 58, 244, 74, 66, 32, 318, 35, 78, 189, 550, 74, 172, 37, 133, 92, 196, 38, 626, 41, 86, 174, 159
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Arithmetic mean of the number of divisors (A000005) and prime-shifted sigma (A003973), thus a(n) is the average between the number of and the sum of divisors of A003961(n).
The local minima occur on primes p, where p/2 < a(p) <= (p+1).

Crossrefs

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A336840(n) = sumdiv(n,d,A048673(d));
    
  • PARI
    A336840(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(numdiv(n)+sigma(factorback(f))); };

Formula

a(n) = Sum_{d|n} A048673(d).
a(n) = (1/2) * (A000005(n) + A003973(n)).
a(n) = A113415(A003961(n)). - Antti Karttunen, Jun 01 2022
a(n) = A349371(A003961(n)) = A364063(A048673(n)). - Antti Karttunen, Nov 30 2024

A336841 Prime-shifted analog of A094471: a(n) = A336845(n) - A003973(n).

Original entry on oeis.org

0, 2, 4, 14, 6, 36, 10, 68, 44, 52, 12, 192, 16, 84, 92, 284, 18, 326, 22, 274, 148, 100, 28, 840, 90, 132, 344, 438, 30, 648, 36, 1094, 176, 148, 212, 1622, 40, 180, 232, 1192, 42, 1032, 46, 520, 802, 228, 52, 3324, 230, 654, 260, 684, 58, 2376, 252, 1896, 316, 244, 60, 3156, 66, 292, 1278, 4010, 332, 1224, 70, 766
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2020

Keywords

Comments

All terms are even because A003973 and A336845 match parity-wise. Also in the sum formulas, only even terms are summed (only one of which is zero).

Crossrefs

Cf. A336846 [= gcd(a(n), A003973(n))].
Twice the terms of A336854.

Programs

Formula

a(n) = A336845(n) - A003973(n) = (A000005(n)*A003961(n)) - A000203(A003961(n)).
a(n) = A094471(A003961(n)).
a(n) = Sum_{d|n} (A003961(n)-A003961(d)) = Sum_{d|A003961(n)} (A003961(n)-d).
a(n) = 2*A336854(n) = 2*Sum_{d|n} (A048673(n)-A048673(d)).
a(n) = ((A003961(n)+1)*A000005(n)) - 2*A336840(n).
a(n) = 2 * ((A000005(n)*A048673(n)) - A336840(n)).
a(n) = A000005(n) * (A336837(n)/A336839(n)) = A336837(n) * A336856(n).

A336838 Numerator of the arithmetic mean of the divisors of A003961(n).

Original entry on oeis.org

1, 2, 3, 13, 4, 6, 6, 10, 31, 8, 7, 13, 9, 12, 12, 121, 10, 62, 12, 52, 18, 14, 15, 30, 19, 18, 39, 26, 16, 24, 19, 182, 21, 20, 24, 403, 21, 24, 27, 40, 22, 36, 24, 91, 124, 30, 27, 363, 133, 38, 30, 39, 30, 78, 28, 60, 36, 32, 31, 52, 34, 38, 62, 1093, 36, 42, 36, 130, 45, 48, 37, 310, 40, 42, 57, 52, 42, 54, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Ratio r(n) = a(n)/A336839(n) is multiplicative. For example r(3) = 3/1, r(4) = 13/3, thus r(12) = r(3)*r(4) = 13/1.
Conjecture: For all primes p with an odd exponent e, a(p^e) is a multiple of A048673(p). Note that q+1 is a divisor of (q+1)^e - sigma(q^e) = (q+1)^e - (1 + q + q^2 + ... + q^e) when e is odd, thus also A048673(p) = (q+1)/2 is, where q = A003961(p), thus the conjecture holds, unless the denominator (A336839) has enough prime factors of A048673(p).

Crossrefs

Cf. A336839 (denominators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336838(n) = numerator(sigma(A003961(n))/numdiv(n));

Formula

a(n) = A057020(A003961(n)).
a(n) = numerator(A003973(n)/A000005(n)).
a(n) = A003973(n) / A336856(n) = A003973(n) / gcd(A000005(n), A003973(n)).
a(p) = A048673(p) for all primes p.
a(p^3) = 2*A048673(p)^3 - 2*A048673(p)^2 + A048673(p). [The denominator A336839(p^3) = 1 for all p]

A336856 Prime-shifted analog of gcd(d(n), sigma(n)): a(n) = gcd(A000005(n), A003973(n)).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 4, 1, 4, 2, 6, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 2, 4, 4, 4, 1, 2, 4, 4, 8, 2, 8, 2, 2, 2, 4, 2, 2, 1, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 1, 4, 8, 2, 2, 4, 8, 2, 4, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4, 8, 2, 4, 4, 6, 4, 4, 4, 12, 2, 2, 2, 3, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2020

Keywords

Crossrefs

Programs

  • PARI
    A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
    A336856(n) = gcd(numdiv(n), A003973(n));

Formula

a(n) = A009205(A003961(n)).
a(n) = gcd(A000005(n), A003973(n)) = gcd(A000005(n), A336841(n)).
a(n) = gcd(A000005(n), 2*A336840(n)).
a(n) = A003973(n) / A336838(n) = A000005(n) / A336839(n).
For n > 1, a(n) = A336841(n) / A336837(n).
For all primes p, and n >= 0, a(p^((2^n)-1)) = 2^n.

A336837 Numerator of ratio A336841(n)/A000005(n).

Original entry on oeis.org

0, 1, 2, 14, 3, 9, 5, 17, 44, 13, 6, 32, 8, 21, 23, 284, 9, 163, 11, 137, 37, 25, 14, 105, 30, 33, 86, 73, 15, 81, 18, 547, 44, 37, 53, 1622, 20, 45, 58, 149, 21, 129, 23, 260, 401, 57, 26, 1662, 230, 109, 65, 114, 29, 297, 63, 237, 79, 61, 30, 263, 33, 73, 213, 4010, 83, 153, 35, 383, 100, 183, 36, 1715, 39, 81
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Crossrefs

Cf. A336839 (denominators).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A336841(n) = ((numdiv(n)*A003961(n)) - sigma(A003961(n)));
    A336837(n) = numerator(A336841(n)/numdiv(n));

Formula

a(n) = A336841(n) / A336856(n) = A336841(n) / gcd(A000005(n), A336841(n)).
Showing 1-7 of 7 results.