cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A349915 Dirichlet inverse of A113415, where A113415 is the arithmetic mean between the number and sum of the odd divisors of n.

Original entry on oeis.org

1, -1, -3, 0, -4, 3, -5, 0, 1, 4, -7, 0, -8, 5, 10, 0, -10, -1, -11, 0, 12, 7, -13, 0, -1, 8, -1, 0, -16, -10, -17, 0, 16, 10, 14, 0, -20, 11, 18, 0, -22, -12, -23, 0, -2, 13, -25, 0, -5, 1, 22, 0, -28, 1, 18, 0, 24, 16, -31, 0, -32, 17, -2, 0, 20, -16, -35, 0, 28, -14, -37, 0, -38, 20, 5, 0, 20, -18, -41, 0, -2, 22
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, (# + 1) * Mod[#, 2] &] / 2; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
  • PARI
    A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    memoA349915 = Map();
    A349915(n) = if(1==n,1,my(v); if(mapisdefined(memoA349915,n,&v), v, v = -sumdiv(n,d,if(dA113415(n/d)*A349915(d),0)); mapput(memoA349915,n,v); (v)));

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A113415(n/d) * a(d).
a(n) = A349916(n) - A113415(n).

A349916 Sum of A113415 and its Dirichlet inverse, where A113415 is the arithmetic mean between the number and sum of the odd divisors of n.

Original entry on oeis.org

2, 0, 0, 1, 0, 6, 0, 1, 9, 8, 0, 3, 0, 10, 24, 1, 0, 7, 0, 4, 30, 14, 0, 3, 16, 16, 21, 5, 0, 4, 0, 1, 42, 20, 40, 8, 0, 22, 48, 4, 0, 6, 0, 7, 40, 26, 0, 3, 25, 18, 60, 8, 0, 23, 56, 5, 66, 32, 0, 14, 0, 34, 53, 1, 64, 10, 0, 10, 78, 12, 0, 8, 0, 40, 70, 11, 70, 12, 0, 4, 61, 44, 0, 18, 80, 46, 96, 7, 0, 44, 80
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2021

Keywords

Crossrefs

Cf. A113415 (also a quadrisection of this sequence), A349915.
Cf. also A349913, A349914.

Programs

  • Mathematica
    s[n_] := DivisorSum[n, (# + 1) * Mod[#, 2] &] / 2; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
  • PARI
    A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    memoA349915 = Map();
    A349915(n) = if(1==n,1,my(v); if(mapisdefined(memoA349915,n,&v), v, v = -sumdiv(n,d,if(dA113415(n/d)*A349915(d),0)); mapput(memoA349915,n,v); (v)));
    A349916(n) = (A113415(n)+A349915(n));

Formula

a(n) = A113415(n) + A349915(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A113415(d) * A349915(n/d).
For all n >= 1, a(4*n) = A113415(n).

A366873 a(n) = A113415(A163511(n)), where A113415(n) is the average of number of and sum of odd divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 8, 3, 4, 1, 22, 8, 17, 3, 14, 4, 5, 1, 63, 22, 80, 8, 65, 17, 30, 3, 42, 14, 26, 4, 18, 5, 7, 1, 185, 63, 393, 22, 316, 80, 202, 8, 206, 65, 174, 17, 117, 30, 68, 3, 124, 42, 127, 14, 100, 26, 50, 4, 55, 18, 38, 5, 26, 7, 8, 1, 550, 185, 1956, 63, 1567, 393, 1403, 22, 1020, 316, 1204, 80, 804, 202
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2023

Keywords

Crossrefs

Cf. A113415, A163511, A366874 (rgs-transform).
Cf. also A324186, A366797, A366875.

Programs

  • PARI
    A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A366873(n) = A113415(A163511(n));

Formula

a(n) = (1/2) * (A324186(n)+A366797(n)).

A353417 a(n) = A113415(A252463(n)), where A113415 is the arithmetic mean between the number of odd divisors and their sum, and A252463 is the hybrid shift.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 4, 1, 1, 4, 5, 3, 7, 5, 3, 1, 8, 8, 10, 4, 4, 7, 11, 3, 8, 8, 1, 5, 13, 14, 16, 1, 5, 10, 14, 8, 17, 11, 7, 4, 20, 18, 22, 7, 3, 13, 23, 3, 17, 17, 8, 8, 25, 22, 18, 5, 10, 16, 28, 14, 31, 17, 4, 1, 26, 26, 32, 10, 11, 26, 35, 8, 37, 20, 8, 11, 26, 30, 38, 4, 1, 22, 41, 18, 30, 23, 13, 7, 43, 42
Offset: 1

Views

Author

Antti Karttunen, Apr 20 2022

Keywords

Comments

Arithmetic mean between A320107(n) and A353416(n).

Crossrefs

Cf. A000203, A064989, A113415 (even bisection), A252463, A320107, A353412, A353416.

Programs

Formula

a(n) = A113415(A252463(n)) = A113415(A353412(n)).
a(n) = (1/2) * (A320107(n) + A353416(n)).
a(2*n) = A113415(n).

A336840 Inverse Möbius transform of A048673.

Original entry on oeis.org

1, 3, 4, 8, 5, 14, 7, 22, 17, 18, 8, 42, 10, 26, 26, 63, 11, 65, 13, 55, 38, 30, 16, 124, 30, 38, 80, 81, 17, 100, 20, 185, 44, 42, 50, 206, 22, 50, 56, 164, 23, 148, 25, 94, 127, 62, 28, 368, 68, 117, 62, 120, 31, 316, 58, 244, 74, 66, 32, 318, 35, 78, 189, 550, 74, 172, 37, 133, 92, 196, 38, 626, 41, 86, 174, 159
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

Arithmetic mean of the number of divisors (A000005) and prime-shifted sigma (A003973), thus a(n) is the average between the number of and the sum of divisors of A003961(n).
The local minima occur on primes p, where p/2 < a(p) <= (p+1).

Crossrefs

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A336840(n) = sumdiv(n,d,A048673(d));
    
  • PARI
    A336840(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(numdiv(n)+sigma(factorback(f))); };

Formula

a(n) = Sum_{d|n} A048673(d).
a(n) = (1/2) * (A000005(n) + A003973(n)).
a(n) = A113415(A003961(n)). - Antti Karttunen, Jun 01 2022
a(n) = A349371(A003961(n)) = A364063(A048673(n)). - Antti Karttunen, Nov 30 2024

A328203 Expansion of Sum_{k>=1} k * x^k / (1 - x^(2*k))^2.

Original entry on oeis.org

1, 2, 5, 4, 8, 10, 11, 8, 20, 16, 17, 20, 20, 22, 42, 16, 26, 40, 29, 32, 58, 34, 35, 40, 53, 40, 74, 44, 44, 84, 47, 32, 90, 52, 94, 80, 56, 58, 106, 64, 62, 116, 65, 68, 174, 70, 71, 80, 102, 106, 138, 80, 80, 148, 146, 88, 154, 88, 89, 168, 92, 94, 241, 64, 172
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 07 2019

Keywords

Crossrefs

Programs

  • Magma
    a:=[]; for k in [1..65] do if IsOdd(k) then a[k]:=(k * #Divisors(k) + DivisorSigma(1,k)) / 2; else a[k]:=(k * (#Divisors(k) - #Divisors(k div 2)) + DivisorSigma(1,k) - DivisorSigma(1,k div 2)) / 2;  end if; end for; a; // Marius A. Burtea, Oct 07 2019
    
  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[k x^k/(1 - x^(2 k))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, (n Mod[#, 2] + Boole[OddQ[n/#]] #)/2 &]; Table[a[n], {n, 1, 65}]
  • PARI
    A328203(n) = if(n%2,(1/2)*(sigma(n)+(n*numdiv(n))),2*A328203(n/2)); \\ Antti Karttunen, Nov 13 2021

Formula

a(n) = (n * d(n) + sigma(n)) / 2 if n odd, (n * (d(n) - d(n/2)) + sigma(n) - sigma(n/2)) / 2 if n even.
a(n) = (n * A001227(n) + A002131(n)) / 2.
a(2*n) = 2 * a(n).
From Antti Karttunen, Nov 13 2021: (Start)
The following two convolutions were found by Jon Maiga's Sequence Machine search algorithm. Both are easy to prove:
a(n) = Sum_{d|n} A003602(d) * A026741(n/d).
a(n) = Sum_{d|n} A109168(d) * A193356(n/d), where A109168(d) = A140472(d) = (d+A006519(d))/2.
(End)

A363901 Expansion of Sum_{k>0} x^k / (1 - x^(3*k))^2.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 3, 1, 5, 1, 3, 6, 4, 1, 9, 1, 1, 8, 7, 4, 9, 1, 3, 10, 6, 1, 16, 1, 5, 12, 9, 1, 13, 4, 3, 14, 8, 6, 21, 1, 4, 16, 11, 1, 17, 1, 9, 21, 14, 1, 26, 1, 1, 20, 16, 8, 21, 1, 7, 22, 12, 4, 31, 6, 9, 24, 15, 1, 32, 1, 3, 26, 14, 10, 36, 4, 6, 28, 27, 1, 29, 1, 16, 30, 16, 1, 41, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 2 &, Mod[#, 3] == 1 &]/3; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%3==1)*(d+2))/3;

Formula

a(n) = (1/3) * Sum_{d|n, d==1 mod 3} (d+2) = (2 * A001817(n) + A078181(n))/3.
G.f.: Sum_{k>0} k * x^(3*k-2) / (1 - x^(3*k-2)).

A351040 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336158(i) = A336158(j), A206787(i) = A206787(j) and A336651(i) = A336651(j) for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 17, 5, 18, 10, 19, 3, 20, 11, 21, 6, 22, 12, 23, 2, 24, 13, 25, 7, 26, 14, 25, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 17, 32, 9, 33, 17, 34, 5, 35, 18, 36, 10, 33, 19, 37, 3, 38, 20, 39, 11, 40, 21, 41, 6, 42
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2022

Keywords

Comments

Restricted growth sequence transform of the ordered triplet [A336158(n), A206787(n), A336651(n)].
For all i, j >= 1:
A003602(i) = A003602(j) => a(i) = a(j),
a(i) = a(j) => A336390(i) = A336390(j) => A336391(i) = A336391(j),
a(i) = a(j) => A347374(i) = A347374(j),
a(i) = a(j) => A351036(i) = A351036(j) => A113415(i) = A113415(j),
a(i) = a(j) => A351461(i) = A351461(j).
From Antti Karttunen, Nov 23 2023: (Start)
Conjectured to be equal to the lexicographically earliest infinite sequence such that b(i) = b(j) => A000593(i) = A000593(j), A336158(i) = A336158(j) and A336467(i) = A336467(j), for all i, j >= 1 (this was the original definition). In any case it holds that a(i) = a(j) => b(i) = b(j) for all i, j >= 1. See comment in A351461.
(End)

Crossrefs

Differs from A347374 for the first time at n=103, where a(103) = 48, while A347374(103) = 30.
Differs from A351035 for the first time at n=175, where a(175) = 80, while A351035(175) = 78.
Differs from A351036 for the first time at n=637, where a(637) = 272, while A351036(637) = 261.

Programs

  • PARI
    up_to = 65539;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A336158(n) = A046523(A000265(n));
    A206787(n) = sumdiv(n, d, d*(d % 2)*issquarefree(d));
    A336651(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,f[i,1]^(f[i,2]-1))); };
    Aux351040(n) = [A336158(n), A206787(n), A336651(n)];
    v351040 = rgs_transform(vector(up_to, n, Aux351040(n)));
    A351040(n) = v351040[n];

Extensions

Original definition moved to the comment section and replaced with a definition that is at least as encompassing, and conjectured to be equal to the original one. - Antti Karttunen, Nov 23 2023

A366874 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366873(i) = A366873(j) for all i, j >= 0, where A366873 is the average of number of and sum of odd divisors of n as permuted by A163511.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 14, 16, 3, 1, 31, 17, 32, 9, 33, 18, 34, 5, 35, 19, 36, 10, 37, 20, 38, 3, 39, 21, 40, 11, 41, 22, 42, 6
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2023

Keywords

Comments

Restricted growth sequence transform of A366873.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A366873(n) = A113415(A163511(n));
    v366874 = rgs_transform(vector(1+up_to,n,A366873(n-1)));
    A366874(n) = v366874[1+n];

A295831 Expansion of Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 19, 30, 47, 76, 118, 181, 277, 417, 624, 929, 1367, 2001, 2913, 4210, 6056, 8665, 12328, 17466, 24640, 34600, 48395, 67442, 93625, 129520, 178588, 245429, 336252, 459324, 625613, 849762, 1151150, 1555378, 2096332, 2818630, 3780903, 5060240, 6757633, 9005106, 11975265
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 44; CoefficientList[Series[Product[((1 + x^(2 k))/(1 - x^(2 k - 1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 44; CoefficientList[Series[Exp[Sum[x^k (1 - (-1)^k x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k.
G.f.: exp(Sum_{k>=1} x^k*(1 - (-1)^k*x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3*(7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (12 * (7*Zeta(3))^(1/3)) - Pi^4 / (3024*Zeta(3)) - 1/24) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(11/8) * sqrt(3*Pi) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017
Showing 1-10 of 20 results. Next