cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A366875 a(n) = A349915(A163511(n)), where A349915 is the Dirichlet inverse of the arithmetic mean between the number and sum of the odd divisors of n.

Original entry on oeis.org

1, -1, 0, -3, 0, 1, 3, -4, 0, -1, -1, -1, 0, 10, 4, -5, 0, -2, 1, -8, 0, 5, 1, -5, 0, -2, -10, 14, 0, 12, 5, -7, 0, -4, 2, -24, 0, 32, 8, -27, 0, 1, -5, 26, 0, 18, 5, -19, 0, 6, 2, 11, 0, -20, -14, 20, 0, -2, -12, 18, 0, 16, 7, -8, 0, -8, 4, -72, 0, 112, 24, -108, 0, -8, -32, 162, 0, 108, 27, -125, 0, 3, -1, 35, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2023

Keywords

Crossrefs

Cf. A113415, A163511, A349915, A366878 (rgs-transform).
Cf. also A366873.

Programs

  • PARI
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    memoA349915 = Map();
    A349915(n) = if(1==n,1,my(v); if(mapisdefined(memoA349915,n,&v), v, v = -sumdiv(n,d,if(dA113415(n/d)*A349915(d),0)); mapput(memoA349915,n,v); (v)));
    A366875(n) = A349915(A163511(n));

A366383 Lexicographically earliest infinite sequence such that a(i) = a(j) => A349915(i) = A349915(j) for all i, j >= 1, where A349915 is Dirichlet inverse of arithmetic mean between the number of odd divisors and their sum.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 1, 8, 9, 4, 10, 11, 12, 4, 13, 2, 14, 4, 15, 16, 17, 4, 2, 18, 2, 4, 19, 13, 20, 4, 21, 12, 22, 4, 23, 24, 25, 4, 26, 27, 28, 4, 29, 30, 31, 4, 7, 1, 32, 4, 33, 1, 25, 4, 34, 21, 35, 4, 36, 37, 29, 4, 38, 19, 39, 4, 40, 41, 42, 4, 43, 38, 11, 4, 38, 44, 45, 4, 29, 32, 46, 4, 34, 47, 48, 4, 49
Offset: 1

Views

Author

Antti Karttunen, Oct 12 2023

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(dA113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    v366383 = rgs_transform(DirInverseCorrect(vector(up_to,n,A113415(n))));
    A366383(n) = v366383[n];

A113415 Expansion of Sum_{k>0} x^k/(1-x^(2k))^2.

Original entry on oeis.org

1, 1, 3, 1, 4, 3, 5, 1, 8, 4, 7, 3, 8, 5, 14, 1, 10, 8, 11, 4, 18, 7, 13, 3, 17, 8, 22, 5, 16, 14, 17, 1, 26, 10, 26, 8, 20, 11, 30, 4, 22, 18, 23, 7, 42, 13, 25, 3, 30, 17, 38, 8, 28, 22, 38, 5, 42, 16, 31, 14, 32, 17, 55, 1, 44, 26, 35, 10, 50, 26, 37, 8, 38, 20, 65, 11, 50, 30, 41
Offset: 1

Views

Author

Michael Somos, Oct 29 2005

Keywords

Comments

Arithmetic mean between the number of odd divisors (A001227) and their sum (A000593). This fact was essentially found by the algorithmic search of Jon Maiga's Sequence Machine, and is easily seen to be correct when compared to the PARI-program given by the original author. - Antti Karttunen, Dec 07 2021

Crossrefs

Quadrisection of A349916.

Programs

  • Mathematica
    Array[DivisorSum[#, If[OddQ[#], (# + 1)/2, 0] &] &, 79] (* Michael De Vlieger, Dec 08 2021 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)))

Formula

G.f.: Sum_{k>0} x^k/(1-x^(2k))^2 = Sum_{k>0} k x^(2k-1)/(1-x^(2k-1)).
a(n) = (1/2) * Sum_{d|n} (d+1)*(d mod 2). - Wesley Ivan Hurt, Nov 25 2021 [From PARI prog]
From Antti Karttunen, Dec 07 2021: (Start)
All these formulas, except the last, were found by the Sequence Machine in some form or another:
a(n) = (1/2) * (A000593(n)+A001227(n)).
a(n) = A069734(A000265(n)). [See either Rutherford's or Luschny's formula in A069734]
a(n) = A349371(n) / A001511(n).
a(n) = A349371(A000265(n)) = A336840(A064989(n)).
a(n) = a(2*n) = a(A000265(n)) = A349916(4*n).
(End)

A349916 Sum of A113415 and its Dirichlet inverse, where A113415 is the arithmetic mean between the number and sum of the odd divisors of n.

Original entry on oeis.org

2, 0, 0, 1, 0, 6, 0, 1, 9, 8, 0, 3, 0, 10, 24, 1, 0, 7, 0, 4, 30, 14, 0, 3, 16, 16, 21, 5, 0, 4, 0, 1, 42, 20, 40, 8, 0, 22, 48, 4, 0, 6, 0, 7, 40, 26, 0, 3, 25, 18, 60, 8, 0, 23, 56, 5, 66, 32, 0, 14, 0, 34, 53, 1, 64, 10, 0, 10, 78, 12, 0, 8, 0, 40, 70, 11, 70, 12, 0, 4, 61, 44, 0, 18, 80, 46, 96, 7, 0, 44, 80
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2021

Keywords

Crossrefs

Cf. A113415 (also a quadrisection of this sequence), A349915.
Cf. also A349913, A349914.

Programs

  • Mathematica
    s[n_] := DivisorSum[n, (# + 1) * Mod[#, 2] &] / 2; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := s[n] + sinv[n]; Array[a, 100] (* Amiram Eldar, Dec 08 2021 *)
  • PARI
    A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    memoA349915 = Map();
    A349915(n) = if(1==n,1,my(v); if(mapisdefined(memoA349915,n,&v), v, v = -sumdiv(n,d,if(dA113415(n/d)*A349915(d),0)); mapput(memoA349915,n,v); (v)));
    A349916(n) = (A113415(n)+A349915(n));

Formula

a(n) = A113415(n) + A349915(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A113415(d) * A349915(n/d).
For all n >= 1, a(4*n) = A113415(n).

A366878 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366875(i) = A366875(j) for all i, j >= 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 1, 5, 6, 3, 2, 2, 2, 3, 7, 8, 9, 3, 10, 1, 11, 3, 12, 1, 9, 3, 10, 13, 14, 3, 15, 12, 16, 3, 6, 17, 18, 3, 19, 20, 21, 3, 1, 9, 22, 3, 23, 12, 24, 3, 25, 17, 26, 3, 27, 28, 29, 3, 10, 30, 23, 3, 31, 32, 11, 3, 11, 8, 33, 3, 34, 35, 36, 3, 11, 37, 38, 3, 39, 40, 41, 3, 5, 2, 42, 3, 43, 44, 45, 3, 1, 46, 47, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2023

Keywords

Comments

Restricted growth sequence transform of A366875.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A113415(n) = if(n<1, 0, sumdiv(n, d, if(d%2, (d+1)/2)));
    memoA349915 = Map();
    A349915(n) = if(1==n,1,my(v); if(mapisdefined(memoA349915,n,&v), v, v = -sumdiv(n,d,if(dA113415(n/d)*A349915(d),0)); mapput(memoA349915,n,v); (v)));
    A366875(n) = A349915(A163511(n));
    v366878 = rgs_transform(vector(1+up_to,n,A366875(n-1)));
    A366878(n) = v366878[1+n];

A378520 Dirichlet inverse of A336840, where A336840 is the inverse Möbius transform of A048673.

Original entry on oeis.org

1, -3, -4, 1, -5, 10, -7, -1, -1, 12, -8, -2, -10, 16, 14, -2, -11, 5, -13, -2, 18, 18, -16, 6, -5, 22, -8, -2, -17, -20, -20, -4, 20, 24, 20, 1, -22, 28, 24, 8, -23, -20, -25, -2, 11, 34, -28, 14, -19, 18, 26, -2, -31, 32, 22, 12, 30, 36, -32, 4, -35, 42, 17, -8, 26, -20, -37, -2, 36, -14, -38, 3, -41, 46, 26, -2, 26
Offset: 1

Views

Author

Antti Karttunen, Nov 30 2024

Keywords

Crossrefs

Möbius transform of A323893.
Dirichlet inverse of A336840.

Programs

  • PARI
    A048673(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (factorback(f)+1)/2; };
    A336840(n) = sumdiv(n,d,A048673(d));
    memoA378520 = Map();
    A378520(n) = if(1==n,1,my(v); if(mapisdefined(memoA378520,n,&v), v, v = -sumdiv(n,d,if(dA336840(n/d)*A378520(d),0)); mapput(memoA378520,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA336840(n/d) * a(d).
a(n) = Sum_{d|n} A008683(n/d)*A323893(d).
a(n) = A349915(A003961(n)).
Showing 1-6 of 6 results.