A323910 Dirichlet inverse of the deficiency of n, A033879.
1, -1, -2, 0, -4, 4, -6, 0, -1, 6, -10, 2, -12, 8, 10, 0, -16, 1, -18, 2, 14, 12, -22, 4, -3, 14, -2, 2, -28, -16, -30, 0, 22, 18, 26, 4, -36, 20, 26, 4, -40, -24, -42, 2, 4, 24, -46, 8, -5, -1, 34, 2, -52, 0, 42, 4, 38, 30, -58, 2, -60, 32, 6, 0, 50, -40, -66, 2, 46, -40, -70, 12, -72, 38, 2, 2, 62, -48, -78, 8, -4, 42, -82, -2, 66, 44, 58, 4, -88, 2, 74, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Jon Maiga, Computer-generated formulas for A323910, Sequence Machine.
Crossrefs
Programs
-
Mathematica
b[n_] := 2 n - DivisorSigma[1, n]; a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]]; Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
-
PARI
up_to = 16384; DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d
A033879(n) = (2*n-sigma(n)); v323910 = DirInverse(vector(up_to,n,A033879(n))); A323910(n) = v323910[n];
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA033879(n/d) * a(d).
From Antti Karttunen, Nov 14 2024: (Start)
Following convolution formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly:
(End)