cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323941 Total number of isomers (nonisomorphic systems) of unbranched tri-4-catafusenes as a function of the number of hexagons (see Cyvin et al. (1996) for precise definition).

Original entry on oeis.org

1, 3, 16, 62, 275, 1121, 4584, 18012, 69573, 262495, 974704, 3562714, 12859127, 45881213, 162093320, 567579192, 1971791241, 6801382203, 23309839120, 79421200630, 269160513115, 907726206233, 3047449980392, 10188384020372, 33930772031565, 112595241877911, 372383348102640, 1227721195083922
Offset: 3

Views

Author

N. J. A. Sloane, Feb 09 2019

Keywords

Comments

From Petros Hadjicostas, May 26 2019: (Start)
Let I(r, k) be the total number of isomers (nonisomorphic systems) of unbranched k-4-catafusenes, which are generated from catafusenes by converting k of its r hexagons to tetragons. According to Cyvin et al. (1996), for r >= k, we have I(r, k) = 1/4 *(binomial(r, k) + (r - 2)! * (r^2 + (4 * k - 1) * r + 4 * k * (k - 2)) * 3^(r - k - 2)/(k! * (r - k)!) + (2 + (-1)^k - (-1)^r) * (binomial(floor(r/2), floor(k/2)) + 2 * binomial(floor(r/2) - 1, floor(k/2) - 1)) * 3^(floor(r/2) - floor(k/2) - 1)). See Eq. (48) on p. 503 in the paper.
Letting k = 0 - 10, we get the eleven columns of Table 2 on p. 501 of Cyvin et al. (1996). (We need r >= max(k, 2) because the number of hexagons r should be greater than or equal to the number of converted polygons k.)
(End)

Crossrefs

Programs

  • Maple
    CyvinI := proc(r,k)
        if r >= k then
            1/4 *(binomial(r, k) + (r - 2)! * (r^2 + (4 * k - 1) * r + 4 * k * (k - 2)) * 3^(r - k - 2)/(k! * (r - k)!) + (2 + (-1)^k - (-1)^r) * (binomial(floor(r/2), floor(k/2)) + 2 * binomial(floor(r/2) - 1, floor(k/2) - 1)) * 3^(floor(r/2) - floor(k/2) - 1));
        else
            -1;
        end if;
    end proc:
    A323941 := proc(n)
        CyvinI(n,3) ;
    end proc:
    seq(A323941(n),n=3..30) ; # R. J. Mathar, Jul 25 2019
  • Mathematica
    CyvinI[r_, k_] := If[r >= k, 1/4 * (Binomial[r, k] + (r-2)! * (r^2 + (4k - 1) * r + 4k * (k-2)) * 3^(r-k-2)/(k! * (r-k)!) + (2 + (-1)^k - (-1)^r) * (Binomial[Floor[r/2], Floor[k/2]] + 2 Binomial[Floor[r/2]-1, Floor[k/2]-1]) * 3^(Floor[r/2] - Floor[k/2] - 1)), -1];
    a[n_] := CyvinI[n, 3];
    Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Apr 25 2023 *)

Formula

a(n) = I(r = n, k = 3) in the formula above in the comments (for n >= 3). - Petros Hadjicostas, May 26 2019
G.f.: -x^3*(-1 +13*x -70*x^2 +192*x^3 -250*x^4 +22*x^5 +402*x^6 -672*x^7 +663*x^8 -387*x^9 +72*x^10) / ( (-1+3*x^2)^2 *(3*x-1)^4 *(x-1)^4 ). - R. J. Mathar, Jul 25 2019

Extensions

Name edited by Petros Hadjicostas, May 26 2019
More terms using equation (48) in the paper from Petros Hadjicostas, May 26 2019