A323941 Total number of isomers (nonisomorphic systems) of unbranched tri-4-catafusenes as a function of the number of hexagons (see Cyvin et al. (1996) for precise definition).
1, 3, 16, 62, 275, 1121, 4584, 18012, 69573, 262495, 974704, 3562714, 12859127, 45881213, 162093320, 567579192, 1971791241, 6801382203, 23309839120, 79421200630, 269160513115, 907726206233, 3047449980392, 10188384020372, 33930772031565, 112595241877911, 372383348102640, 1227721195083922
Offset: 3
Keywords
Links
- S. J. Cyvin, B. N. Cyvin and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of molecular structure 376 (Issues 1-3) (1996), 495-505. See the last column of Table 1 on p. 500.
- Index entries for linear recurrences with constant coefficients, signature (16,-102,304,-247,-1056,3372,-3168,-2223,8208,-8262,3888,-729).
Programs
-
Maple
CyvinI := proc(r,k) if r >= k then 1/4 *(binomial(r, k) + (r - 2)! * (r^2 + (4 * k - 1) * r + 4 * k * (k - 2)) * 3^(r - k - 2)/(k! * (r - k)!) + (2 + (-1)^k - (-1)^r) * (binomial(floor(r/2), floor(k/2)) + 2 * binomial(floor(r/2) - 1, floor(k/2) - 1)) * 3^(floor(r/2) - floor(k/2) - 1)); else -1; end if; end proc: A323941 := proc(n) CyvinI(n,3) ; end proc: seq(A323941(n),n=3..30) ; # R. J. Mathar, Jul 25 2019
-
Mathematica
CyvinI[r_, k_] := If[r >= k, 1/4 * (Binomial[r, k] + (r-2)! * (r^2 + (4k - 1) * r + 4k * (k-2)) * 3^(r-k-2)/(k! * (r-k)!) + (2 + (-1)^k - (-1)^r) * (Binomial[Floor[r/2], Floor[k/2]] + 2 Binomial[Floor[r/2]-1, Floor[k/2]-1]) * 3^(Floor[r/2] - Floor[k/2] - 1)), -1]; a[n_] := CyvinI[n, 3]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Apr 25 2023 *)
Formula
a(n) = I(r = n, k = 3) in the formula above in the comments (for n >= 3). - Petros Hadjicostas, May 26 2019
G.f.: -x^3*(-1 +13*x -70*x^2 +192*x^3 -250*x^4 +22*x^5 +402*x^6 -672*x^7 +663*x^8 -387*x^9 +72*x^10) / ( (-1+3*x^2)^2 *(3*x-1)^4 *(x-1)^4 ). - R. J. Mathar, Jul 25 2019
Extensions
Name edited by Petros Hadjicostas, May 26 2019
More terms using equation (48) in the paper from Petros Hadjicostas, May 26 2019
Comments