A323939
Number of unbranched tri-4-catafusenes under the symmetry point group C_{2v} as a function of the number of hexagons (see Cyvin et al. (1996) for precise definition).
Original entry on oeis.org
0, 2, 5, 10, 22, 28, 65, 60, 172, 110, 461, 182, 1314, 280, 3977, 408, 12504, 570, 40021, 770, 128814, 1012, 414481, 1300, 1330052, 1638, 4253341, 2030, 13553978, 2480, 43049433, 2992, 136317872, 3570, 430471077, 4218, 1355976262, 4940, 4261630689, 5740, 13366013020, 6622
Offset: 3
- Colin Barker, Table of n, a(n) for n = 3..1000
- S. J. Cyvin, B. N. Cyvin and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of Molecular Structure 376 (Issues 1-3) (1996), 495-505. See Table 1 (p. 500).
- Eric Weisstein's World of Mathematics, Fusene.
- Wikipedia, Molecular symmetry.
- Wikipedia, Point groups in three dimensions.
- Wikipedia, Polyhex (mathematics).
- Wikipedia, Schoenflies notation.
- Index entries for linear recurrences with constant coefficients, signature (2,7,-16,-14,44,2,-48,15,18,-9).
-
a[n_] := (1/24) (3((-1)^n - 1) (n - 1) + 2 n (n - 1) (n - 2)+ ((-1)^(n + 1) + 1) (-3n + 3^((n - 3)/2) (n + 3) + 3));
a /@ Range[3, 44] (* Jean-François Alcover, Oct 24 2019 *)
-
concat(0, Vec(x^4*(2 + x - 14*x^2 - x^3 + 22*x^4 - 3*x^5 + 2*x^6 - x^7) / ((1 - x)^4*(1 + x)^2*(1 - 3*x^2)^2) + O(x^40))) \\ Colin Barker, May 30 2019
A323940
Number of nonisomorphic systems (isomers) for the unsymmetrical schemes (group C_s) for unbranched tri-4-catafusenes as a function of the number of hexagons (see Cyvin et al. (1996) for precise definition).
Original entry on oeis.org
0, 1, 8, 52, 244, 1093, 4490, 17952, 69304, 262385, 973916, 3562532, 12856716, 45880933, 162085694, 567578784, 1971766704, 6801381633, 23309759728, 79421199860, 269160256356, 907726205221, 3047449152562, 10188384019072, 33930769372904
Offset: 3
- Georg Fischer, Table of n, a(n) for n = 3..103
- S. J. Cyvin, B. N. Cyvin and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of Molecular Structure 376 (Issues 1-3) (1996), 495-505. See Table 1 on p. 500.
- Eric Weisstein's World of Mathematics, Fusene.
- Wikipedia, Molecular symmetry.
- Wikipedia, Point groups in three dimensions.
- Wikipedia, Polyhex (mathematics).
- Wikipedia, Schoenflies notation.
- Index entries for linear recurrences with constant coefficients, signature (14,-71,116,259,-1246,1013,2520,-5187,594,5931,-4428, -1215,2430,-729).
-
# Calculates a(r) = AA(r), where r = n is the number of hexagons.
# Crude numbers:
JJ := proc(i) sum(binomial(j + 1, 3)*binomial(i - 2, j - 1)*2^(i - 1 - j), j = 1 .. i - 1); end proc;
# Linearly annelated systems of D_{2h} symmetry:
DD := proc(r) 1/4*(1 - (-1)^r)*(r - 1); end proc;
# Linearly annelated systems of C_{2v} symmetry:
LL := proc(r) 1/2*binomial(r, 3) - (1/8 - 1/8*(-1)^r)*(r - 1); end proc;
# Centrosymmetrical (C_{2h}) systems:
CC := proc(n) 1/24*(1 - (-1)^n)*((3 + n)*3^(1/2*n - 3/2) - 3*n + 3); end proc;
# Total mirror-symmetrical (C_{2v}) systems:
MM := proc(n) CC(n) + LL(n); end proc;
# Unsymmetrical (C_s) systems:
AA := proc(r) 1/4*(JJ(r) - DD(r) - 2*CC(r) - 2*MM(r)); end proc;
# Generate sequence:
for m from 3 to 100 do AA(m); end do; # Petros Hadjicostas, May 26 2019
-
LinearRecurrence[{14, -71, 116, 259, -1246, 1013, 2520, -5187, 594, 5931, -4428, -1215, 2430, -729}, {0, 1, 8, 52, 244, 1093, 4490, 17952, 69304, 262385, 973916, 3562532, 12856716, 45880933}, 100] (* from the g.f., Georg Fischer, Nov 07 2019 *)
More terms using various equations in Cyvin et al. (1996) from
Petros Hadjicostas, May 26 2019
A323942
Irregular triangle read by rows giving the total number of isomers (nonisomorphic systems) of unbranched k-4-catafusenes.
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 1, 4, 7, 9, 3, 1, 10, 23, 29, 16, 5, 1, 25, 69, 99, 62, 27, 5, 1, 70, 229, 351, 275, 132, 39, 7, 1, 196, 731, 1249, 1121, 643, 221, 55, 7, 1, 574, 2385, 4437, 4584, 2997, 1278, 367, 72, 9, 1, 1681, 7657, 15597, 18012, 13458, 6678, 2322, 540, 93, 9, 1
Offset: 2
Triangle begins (rows start at n = 2 and columns at k = 0):
1, 1, 1;
2, 3, 3, 1;
4, 7, 9, 3, 1;
10, 23, 29, 16, 5, 1;
25, 69, 99, 62, 27, 5, 1;
70, 229, 351, 275, 132, 39, 7, 1;
196, 731, 1249, 1121, 643, 221, 55, 7, 1;
574, 2385, 4437, 4584, 2997, 1278, 367, 72, 9, 1;
1681, 7657, 15597, 18012, 13458, 6678, 2322, 540, 93, 9, 1;
...
Showing 1-3 of 3 results.
Comments