A323942 Irregular triangle read by rows giving the total number of isomers (nonisomorphic systems) of unbranched k-4-catafusenes.
1, 1, 1, 2, 3, 3, 1, 4, 7, 9, 3, 1, 10, 23, 29, 16, 5, 1, 25, 69, 99, 62, 27, 5, 1, 70, 229, 351, 275, 132, 39, 7, 1, 196, 731, 1249, 1121, 643, 221, 55, 7, 1, 574, 2385, 4437, 4584, 2997, 1278, 367, 72, 9, 1, 1681, 7657, 15597, 18012, 13458, 6678, 2322, 540, 93, 9, 1
Offset: 2
Examples
Triangle begins (rows start at n = 2 and columns at k = 0): 1, 1, 1; 2, 3, 3, 1; 4, 7, 9, 3, 1; 10, 23, 29, 16, 5, 1; 25, 69, 99, 62, 27, 5, 1; 70, 229, 351, 275, 132, 39, 7, 1; 196, 731, 1249, 1121, 643, 221, 55, 7, 1; 574, 2385, 4437, 4584, 2997, 1278, 367, 72, 9, 1; 1681, 7657, 15597, 18012, 13458, 6678, 2322, 540, 93, 9, 1; ...
Links
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, Journal of Molecular structure 376 (Issues 1-3) (1996), 495-505. See Table 2 on p. 501.
Formula
For the element T(n, k) in row n >= 2 and column k >= 0 (such that max(k, 2) <= n), we have T(n, k) = I(r = n, k), where I(r, k) is given above in the comments. - Petros Hadjicostas, May 26 2019
Extensions
Name edited by Petros Hadjicostas, May 26 2019
Comments