A323949 Number of set partitions of {1, ..., n} with no block containing three distinct cyclically successive vertices.
1, 1, 2, 4, 10, 36, 145, 631, 3015, 15563, 86144, 508311, 3180930, 21018999, 146111543, 1065040886, 8117566366, 64531949885, 533880211566, 4587373155544, 40865048111424, 376788283806743, 3590485953393739, 35312436594162173, 357995171351223109, 3736806713651177702
Offset: 0
Keywords
Examples
The a(1) = 1 through a(4) = 10 set partitions: {{1}} {{1,2}} {{1},{2,3}} {{1,2},{3,4}} {{1},{2}} {{1,2},{3}} {{1,3},{2,4}} {{1,3},{2}} {{1,4},{2,3}} {{1},{2},{3}} {{1},{2},{3,4}} {{1},{2,3},{4}} {{1,2},{3},{4}} {{1},{2,4},{3}} {{1,3},{2},{4}} {{1,4},{2},{3}} {{1},{2},{3},{4}}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Crossrefs
Programs
-
Mathematica
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],3,1,1],Function[ed,UnsameQ@@ed&&Complement[ed,#]=={}]]=={}&],Range[n]]],{n,8}]
Extensions
a(12)-a(25) from Alois P. Heinz, Feb 10 2019
Comments