A323953 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into singletons and connected subsequences of sizes > k.
1, 2, 1, 5, 2, 1, 12, 6, 2, 1, 27, 12, 7, 2, 1, 58, 23, 14, 8, 2, 1, 121, 44, 23, 16, 9, 2, 1, 248, 82, 38, 26, 18, 10, 2, 1, 503, 149, 65, 38, 29, 20, 11, 2, 1, 1014, 267, 112, 57, 42, 32, 22, 12, 2, 1, 2037, 475, 189, 90, 57, 46, 35, 24, 13, 2, 1
Offset: 1
Examples
Triangle begins: 1 2 1 5 2 1 12 6 2 1 27 12 7 2 1 58 23 14 8 2 1 121 44 23 16 9 2 1 248 82 38 26 18 10 2 1 503 149 65 38 29 20 11 2 1 1014 267 112 57 42 32 22 12 2 1 2037 475 189 90 57 46 35 24 13 2 1 4084 841 312 146 80 62 50 38 26 14 2 1 Row 4 counts the following connected partitions: {{1234}} {{1234}} {{1234}} {{1}{2}{3}{4}} {{1}{234}} {{1}{234}} {{1}{2}{3}{4}} {{12}{34}} {{123}{4}} {{123}{4}} {{124}{3}} {{124}{3}} {{134}{2}} {{134}{2}} {{1}{2}{3}{4}} {{14}{23}} {{1}{2}{34}} {{1}{23}{4}} {{12}{3}{4}} {{14}{2}{3}} {{1}{2}{3}{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
Mathematica
cyceds[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,Prepend[Range[i+k,n+i-1],i]}]]; spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; Table[Length[spsu[cyceds[n,k],Range[n]]],{n,10},{k,n}]
-
PARI
T(n,k) = {1 + if(k
Andrew Howroyd, Jan 19 2023
Formula
T(n,k) = 2 - n + Sum_{i=1..floor(n/k)} n*binomial(n-i*k+i-1, 2*i-1)/i for 1 <= k < n. - Andrew Howroyd, Jan 19 2023