A323954 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into connected subsequences of sizes > k, n >=1, 0 <= k < n.
1, 2, 1, 5, 1, 1, 12, 3, 1, 1, 27, 6, 1, 1, 1, 58, 12, 4, 1, 1, 1, 121, 22, 8, 1, 1, 1, 1, 248, 39, 13, 5, 1, 1, 1, 1, 503, 67, 22, 10, 1, 1, 1, 1, 1, 1014, 113, 36, 16, 6, 1, 1, 1, 1, 1, 2037, 188, 56, 23, 12, 1, 1, 1, 1, 1, 1, 4084, 310, 86, 35, 19, 7, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: 1 2 1 5 1 1 12 3 1 1 27 6 1 1 1 58 12 4 1 1 1 121 22 8 1 1 1 1 248 39 13 5 1 1 1 1 503 67 22 10 1 1 1 1 1 1014 113 36 16 6 1 1 1 1 1 2037 188 56 23 12 1 1 1 1 1 1 4084 310 86 35 19 7 1 1 1 1 1 1 Row 4 counts the following partitions: {{1234}} {{1234}} {{1234}} {{1234}} {{1}{234}} {{12}{34}} {{12}{34}} {{14}{23}} {{123}{4}} {{124}{3}} {{134}{2}} {{14}{23}} {{1}{2}{34}} {{1}{23}{4}} {{12}{3}{4}} {{14}{2}{3}} {{1}{2}{3}{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
Mathematica
cycedsprop[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,i+k,n+i-1}]]; spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; Table[Length[spsu[cycedsprop[n,k],Range[n]]],{n,12},{k,0,n-1}]
-
PARI
T(n,k) = 1 - n + sum(i=1, n\(k+1), n*binomial(n-i*k-1, i-1)/i) \\ Andrew Howroyd, Jan 19 2023
Formula
T(n,k) = 1 - n + Sum_{i=1..floor(n/(k+1))} n*binomial(n-i*k-1, i-1)/i. - Andrew Howroyd, Jan 19 2023