cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323954 Regular triangle read by rows where T(n, k) is the number of ways to split an n-cycle into connected subsequences of sizes > k, n >=1, 0 <= k < n.

Original entry on oeis.org

1, 2, 1, 5, 1, 1, 12, 3, 1, 1, 27, 6, 1, 1, 1, 58, 12, 4, 1, 1, 1, 121, 22, 8, 1, 1, 1, 1, 248, 39, 13, 5, 1, 1, 1, 1, 503, 67, 22, 10, 1, 1, 1, 1, 1, 1014, 113, 36, 16, 6, 1, 1, 1, 1, 1, 2037, 188, 56, 23, 12, 1, 1, 1, 1, 1, 1, 4084, 310, 86, 35, 19, 7, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Examples

			Triangle begins:
     1
     2    1
     5    1    1
    12    3    1    1
    27    6    1    1    1
    58   12    4    1    1    1
   121   22    8    1    1    1    1
   248   39   13    5    1    1    1    1
   503   67   22   10    1    1    1    1    1
  1014  113   36   16    6    1    1    1    1    1
  2037  188   56   23   12    1    1    1    1    1    1
  4084  310   86   35   19    7    1    1    1    1    1    1
Row 4 counts the following partitions:
  {{1234}}        {{1234}}    {{1234}}  {{1234}}
  {{1}{234}}      {{12}{34}}
  {{12}{34}}      {{14}{23}}
  {{123}{4}}
  {{124}{3}}
  {{134}{2}}
  {{14}{23}}
  {{1}{2}{34}}
  {{1}{23}{4}}
  {{12}{3}{4}}
  {{14}{2}{3}}
  {{1}{2}{3}{4}}
		

Crossrefs

Column k = 0 is A000325. Column k = 1 is A066982. Column k = 2 is A323951. Column k = 3 is A306351.

Programs

  • Mathematica
    cycedsprop[n_,k_]:=Union[Sort/@Join@@Table[1+Mod[Range[i,j]-1,n],{i,n},{j,i+k,n+i-1}]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[cycedsprop[n,k],Range[n]]],{n,12},{k,0,n-1}]
  • PARI
    T(n,k) = 1 - n + sum(i=1, n\(k+1), n*binomial(n-i*k-1, i-1)/i) \\ Andrew Howroyd, Jan 19 2023

Formula

T(n,k) = 1 - n + Sum_{i=1..floor(n/(k+1))} n*binomial(n-i*k-1, i-1)/i. - Andrew Howroyd, Jan 19 2023