A324013 Number of self-complementary set partitions of {1, ..., n} with no singletons.
1, 0, 1, 1, 4, 3, 15, 16, 75, 89, 428, 571, 2781, 4060, 20093, 31697, 159340, 268791, 1372163, 2455804, 12725447, 24012697, 126238060, 249880687, 1332071241, 2754348360, 14881206473, 32029000641, 175297058228, 391548016475, 2169832010759
Offset: 0
Keywords
Examples
The a(3) = 1 through a(6) = 15 self-complementary set partitions with no singletons: {{123}} {{1234}} {{12345}} {{123456}} {{12}{34}} {{135}{24}} {{123}{456}} {{13}{24}} {{15}{234}} {{124}{356}} {{14}{23}} {{1256}{34}} {{1346}{25}} {{135}{246}} {{145}{236}} {{16}{2345}} {{12}{34}{56}} {{13}{25}{46}} {{14}{25}{36}} {{15}{26}{34}} {{16}{23}{45}} {{16}{24}{35}} {{16}{25}{34}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn]; Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0]&]//Length,{n,0,10}]
-
PARI
seq(n)={my(x=x+O(x*x^(n\2)), p=exp((exp(2*x)-3)/2-x+exp(x)), q=(exp(x)-1)*p); vector(n+1, n, my(c=(n-1)\2); c!*polcoef(if(n%2, p, q), c))} \\ Andrew Howroyd, Feb 16 2022
Formula
From Andrew Howroyd, Feb 16 2022: (Start)
a(2*n) = A086365(n-1) for n > 0.
a(2*n) = n!*[x^n] exp((exp(2*x) - 3)/2 - x + exp(x));
a(2*n+1) = n!*[x^n] (exp(x) - 1)*exp((exp(2*x) - 3)/2 - x + exp(x)).
(End)
Extensions
Terms a(13) and beyond from Andrew Howroyd, Feb 16 2022
Comments