cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324013 Number of self-complementary set partitions of {1, ..., n} with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 4, 3, 15, 16, 75, 89, 428, 571, 2781, 4060, 20093, 31697, 159340, 268791, 1372163, 2455804, 12725447, 24012697, 126238060, 249880687, 1332071241, 2754348360, 14881206473, 32029000641, 175297058228, 391548016475, 2169832010759
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2019

Keywords

Comments

The complement of a set partition pi of {1, ..., n} is defined as n + 1 - pi (elementwise) on page 3 of Callan. For example, the complement of {{1,5},{2},{3,6},{4}} is {{1,4},{2,6},{3},{5}}.

Examples

			The  a(3) = 1 through a(6) = 15 self-complementary set partitions with no singletons:
  {{123}}  {{1234}}    {{12345}}    {{123456}}
           {{12}{34}}  {{135}{24}}  {{123}{456}}
           {{13}{24}}  {{15}{234}}  {{124}{356}}
           {{14}{23}}               {{1256}{34}}
                                    {{1346}{25}}
                                    {{135}{246}}
                                    {{145}{236}}
                                    {{16}{2345}}
                                    {{12}{34}{56}}
                                    {{13}{25}{46}}
                                    {{14}{25}{36}}
                                    {{15}{26}{34}}
                                    {{16}{23}{45}}
                                    {{16}{24}{35}}
                                    {{16}{25}{34}}
		

Crossrefs

Cf. A000110, A000296, A080107 (self-complementary), A086365, A124323, A324012 (self-conjugate).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn];
    Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0]&]//Length,{n,0,10}]
  • PARI
    seq(n)={my(x=x+O(x*x^(n\2)), p=exp((exp(2*x)-3)/2-x+exp(x)), q=(exp(x)-1)*p); vector(n+1, n, my(c=(n-1)\2); c!*polcoef(if(n%2, p, q), c))} \\ Andrew Howroyd, Feb 16 2022

Formula

From Andrew Howroyd, Feb 16 2022: (Start)
a(2*n) = A086365(n-1) for n > 0.
a(2*n) = n!*[x^n] exp((exp(2*x) - 3)/2 - x + exp(x));
a(2*n+1) = n!*[x^n] (exp(x) - 1)*exp((exp(2*x) - 3)/2 - x + exp(x)).
(End)

Extensions

Terms a(13) and beyond from Andrew Howroyd, Feb 16 2022