cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324017 Square array A(m,n) (m>=1, n>=1) read by antidiagonals: A(m,n) = (2*n - 1)^^m mod (2*n)^m (see Comments for definition of ^^).

Original entry on oeis.org

1, 3, 1, 5, 11, 1, 7, 29, 59, 1, 9, 55, 29, 59, 1, 11, 89, 119, 1109, 827, 1, 13, 131, 289, 3703, 3701, 2875, 1, 15, 181, 563, 5289, 7799, 34805, 15163, 1, 17, 239, 965, 16115, 45289, 138871, 128117, 31547, 1, 19, 305, 1519, 25661, 57587, 745289, 1711735, 687989, 97083, 1
Offset: 1

Views

Author

Davis Smith, Mar 28 2019

Keywords

Comments

Tetration (x^^n) is defined as x^^0 = 1 and x^^n = x^(x^^(n - 1)). Another way to put this is that x^^n = x^x^x^...x with n x's.
Conjecture: For any three integers (greater than 1), m, n, and k, such that (2*n - 1)^^m == k (mod (2*n)^m), (2*n - 1)^k == k (mod (2*n)^m). For example, 5^^2 == 29 (mod 6^2) and 5^29 == 29 (mod 6^2).
Conjecture: For n > 1 and m >= 2, floor(((2*n - 1)^^m)/(2*n)) == 2*(n - 1) (mod 2*n). For example, floor((13^^3)/14) == 12 (mod 14) and floor((15^^4)/16) == 14 (mod 16).
Conjecture: For m > 1, where (2*n - 1)^^m == j (mod (2*n)^(m + 1)), A(m + 1,n) = j. For example, A(6,3) = 563 and A(6,4) = 16115; 11^^3 == 563 (mod 12^3) and 11^^3 == 16115 (mod 12^4).

Examples

			Square array A(m,n) begins:
  \n  1     2      3       4        5          6         7          8 ...
  m\
   1| 1     3      5       7        9         11        13         15 ...
   2| 1    11     29      55       89        131       181        239 ...
   3| 1    59     29     119      289        563       965       1519 ...
   4| 1    59   1109    3703     5289      16115     25661      13807 ...
   5| 1   827   3701    7799    45289      57587    332989     669167 ...
   6| 1  2875  34805  138871   745289    1799411   4635581     669167 ...
   7| 1 15163 128117 1711735  2745289   25687283  49812797   67778031 ...
   8| 1 31547 687989 8003191 92745289  419837171 155226301 3557438959 ...
.
Examples of columns in this array:
A(m,1) = A000012(m - 1).
A(m,5) = A306686(m) with a note about how this sequence repeats terms rather than skipping.
Examples of rows in this array:
A(1,n) = A005408(n - 1).
A(2,n) = A082108(n - 1).
		

Crossrefs

Programs

  • PARI
    tetrmod(b,n,m)=my(t=b);i=0;while(i<=n, i++&&if(i>1, t=lift(Mod(b,m)^t), t)); t
    tetrmatrix(lim)= matrix(lim,lim,x,y,tetrmod((2*y)-1,x,(2*y)^x))