A324017 Square array A(m,n) (m>=1, n>=1) read by antidiagonals: A(m,n) = (2*n - 1)^^m mod (2*n)^m (see Comments for definition of ^^).
1, 3, 1, 5, 11, 1, 7, 29, 59, 1, 9, 55, 29, 59, 1, 11, 89, 119, 1109, 827, 1, 13, 131, 289, 3703, 3701, 2875, 1, 15, 181, 563, 5289, 7799, 34805, 15163, 1, 17, 239, 965, 16115, 45289, 138871, 128117, 31547, 1, 19, 305, 1519, 25661, 57587, 745289, 1711735, 687989, 97083, 1
Offset: 1
Examples
Square array A(m,n) begins: \n 1 2 3 4 5 6 7 8 ... m\ 1| 1 3 5 7 9 11 13 15 ... 2| 1 11 29 55 89 131 181 239 ... 3| 1 59 29 119 289 563 965 1519 ... 4| 1 59 1109 3703 5289 16115 25661 13807 ... 5| 1 827 3701 7799 45289 57587 332989 669167 ... 6| 1 2875 34805 138871 745289 1799411 4635581 669167 ... 7| 1 15163 128117 1711735 2745289 25687283 49812797 67778031 ... 8| 1 31547 687989 8003191 92745289 419837171 155226301 3557438959 ... . Examples of columns in this array: A(m,1) = A000012(m - 1). A(m,5) = A306686(m) with a note about how this sequence repeats terms rather than skipping. Examples of rows in this array: A(1,n) = A005408(n - 1). A(2,n) = A082108(n - 1).
Links
- Charles W. Trigg, Problem 559, Crux Mathematicorum, page 192, Vol. 7, Jun. 81.
- Eric Weisstein's World of Mathematics,Power Tower.
- Wikipedia, Tetration.
Programs
-
PARI
tetrmod(b,n,m)=my(t=b);i=0;while(i<=n, i++&&if(i>1, t=lift(Mod(b,m)^t), t)); t tetrmatrix(lim)= matrix(lim,lim,x,y,tetrmod((2*y)-1,x,(2*y)^x))
Comments