cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324075 Number of defective (binary) heaps on n elements having one half of their ancestor-successor pairs (rounded down) distorted.

Original entry on oeis.org

1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 359520, 3590400, 39362400, 472919040, 6133670400, 85948262400, 1284106824000, 20434058444800, 345796766515200, 6188467544064000, 117398964114432000, 2341018467532800000, 49035684501872640000, 1074839883779211264000
Offset: 0

Views

Author

Alois P. Heinz, Feb 14 2019

Keywords

Comments

Number of permutations p of [n] having exactly floor(A061168(n)/2) pairs (i,j) in {1,...,n} X {1,...,floor(log_2(i))} such that p(i) > p(floor(i/2^j)).
Central terms (also maxima) of rows of A306393.

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, ilog2(n)+h(n-1)) end:
    b:= proc(u, o) option remember; local n, g, l; n:= u+o;
          if n=0 then 1
        else g:= 2^ilog2(n); l:= min(g-1, n-g/2); expand(
             add(x^(n-j)*add(binomial(j-1, i)*binomial(n-j, l-i)*
             b(i, l-i)*b(j-1-i, n-l-j+i), i=0..min(j-1, l)), j=1..u)+
             add(x^(j-1)*add(binomial(j-1, i)*binomial(n-j, l-i)*
             b(l-i, i)*b(n-l-j+i, j-1-i), i=0..min(j-1, l)), j=1..o))
          fi
        end:
    a:= n-> coeff(b(n, 0), x, iquo(h(n), 2)):
    seq(a(n), n=0..25);
  • Mathematica
    h[n_] := h[n] = If[n < 1, 0, Length[IntegerDigits[n, 2]] - 1 + h[n - 1]];
    b[u_, o_] := b[u, o] = Module[{n, g, l}, n = u + o; If[n == 0, 1,
         g = 2^(Length[IntegerDigits[n, 2]] - 1); l = Min[g - 1, n - g/2];
         Expand[Sum[x^(n - j)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
         b[i, l-i]*b[j-1-i, n-l-j+i], {i, 0, Min[j - 1, l]}], {j, 1, u}] +
         Sum[x^(j - 1)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
         b[l-i, i]*b[n-l-j+i, j-1-i], {i, 0, Min[j - 1, l]}], {j, 1, o}]]]];
    a[n_] := Coefficient[b[n, 0], x, Quotient[h[n], 2]];
    a /@ Range[0, 25] (* Jean-François Alcover, Apr 23 2021, after Alois P. Heinz *)

Formula

a(n) = A306393(floor(A061168(n)/2)).
a(n) <= (n-1)! for n >= 1 with equality only for n <= 9.