cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324076 Integers which are the sum of distinct primes of the form 6*n - 1.

Original entry on oeis.org

5, 11, 16, 17, 22, 23, 28, 29, 33, 34, 39, 40, 41, 45, 46, 47, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 68, 69, 70, 71, 74, 75, 76, 80, 81, 82, 83, 85, 86, 87, 88, 89, 92, 93, 94, 97, 98, 99, 100, 101, 103, 104, 105, 106
Offset: 1

Views

Author

Bernard Schott, Feb 14 2019

Keywords

Comments

A theorem due to Andrzej Makowski: every natural number greater than 161 is the sum of distinct primes of the form "6n-1". (See Sierpiński and David Wells.) All the numbers < 161 and which are the sum of numbers of the form "6n-1" are here in this sequence, complement of A048264.

Examples

			22 = 5 + 17; 39 = 5 + 11 + 23; 68 = 5 + 11 + 23 + 29; 139 = 11 + 17 + 23 + 29 + 59.
		

References

  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Cf. A002145, A048262 (not the sum of distinct primes of the form 4n-1)
Cf. A002144, A048263 (not the sum of distinct primes of the form 4n+1).
Cf. A007528, A048264 (not the sum of distinct primes of the form 6n-1).
Cf. A002476, A048265 (not the sum of distinct primes of the form 6n+1).

Programs

  • Mathematica
    Select[Range@ 60, Count[IntegerPartitions[#], ?(And[UnsameQ @@ #, AllTrue[#, And[PrimeQ@ #, Mod[#, 6] == 5] &]] &)] > 0 &] (* _Michael De Vlieger, Feb 15 2019 *)
    With[{prs=Select[Prime[Range[30]],Mod[#,6]==5&]},Select[Union[Rest[ Total/@ Subsets[ prs]]],#<=Max[prs]&]] (* Harvey P. Dale, Mar 11 2023 *)
  • Python
    def A324076(n): return int('050b101116171c1d21222728292d2e2f33343538393a3b3e3f40444546474a4b4c5051525355565758595c5d5e61626364656768696a6b6d6e6f707173747576797a7b7c7e7f808182838485868788898a8b8c8d8e909192939495969798999a9c9d9e9fa0'[n-1<<1:n<<1],16) if n<102 else n+60 # Chai Wah Wu, Feb 26 2025
    
  • Python
    from itertools import combinations
    from sympy import primerange
    def A324076(n):
        if n>101: return n+60
        plist = list(p for p in primerange(161) if p%6==5)
        xlist = sorted(set(sum(d) for i in range(1,len(plist)+1) for d in combinations(plist,i) if sum(d) < 162))
        return xlist[n-1] # Chai Wah Wu, Feb 28 2025

Formula

a(n) = n + 60 for n > 101. - Stefano Spezia, Mar 01 2025