cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324109 Numbers n such that A324108(n) = A324054(n-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 58, 59, 61, 62, 64, 67, 68, 71, 72, 73, 74, 76, 79, 80, 81, 82, 83, 86, 87, 88, 89, 92, 94, 96, 97, 98, 100, 101, 103, 104, 106, 107, 108, 109, 112, 113, 116, 118, 121
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that A324054(n-1) is equal to A324108(n), which is a multiplicative function with A324108(p^e) = A324054((p^e)-1).
Prime powers (A000961) is a subsequence by definition.
Also A070776 is a subsequence. This follows because for every n of the form 2^i * p^j (where p is an odd prime, and i >= 0, j >= 0), we have A324108(2^i * p^j) = A324054(2^i - 1)*A324054(p^j - 1) = sigma(A005940(2^i)) * sigma(A005940(p^j)). Because A005940(1) = 1, and A005940(2n) = 2*A005940(n), the powers of two are among the fixed points of A005940 (cf. A029747), thus the left half of product is sigma(2^i), while on the other hand, we know that A005940(p^j) is odd (because A005940 also preserves parity), and thus the whole product is equal to sigma(2^i * A005940(p^j)) = sigma(A005940(2^i * p^j)) = A324054((2^i * p^j)-1).
See subsequence A324111 for less regular solutions.

Crossrefs

Union of A070776 and A324111.
Cf. A000961 (a subsequence), A029747, A324054, A324107, A324108, A324110 (complement).

Programs

  • PARI
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    A324108(n) = { my(f=factor(n)); prod(i=1, #f~, A324054((f[i,1]^f[i,2])-1)); };
    isA324109(n) = (A324054(n-1)==A324108(n));
    for(n=1,121,if(isA324109(n), print1(n,", ")));