cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324111 Numbers n for which A324108(n) = A324054(n-1) and which are neither prime powers nor of the form 2^i * p^j, where p is an odd prime, with either exponent i or j > 0.

Original entry on oeis.org

1, 87, 174, 348, 696, 1392, 2091, 2784, 4182, 5568, 8364, 11136, 16683, 16728, 22272, 33215, 33366, 33456, 44544, 66430, 66732, 66912, 89088, 132860, 133464, 133824, 178176, 265720, 266928, 267179, 267648, 356352, 531440, 533856, 534358, 535296, 712704, 1062880, 1066877, 1067712, 1068716, 1070592, 1319235, 1425408
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Comments

Setwise difference of A324109 and A070776.
Setwise difference of A070537 and A324110.
If an odd number n > 1 is present, then all 2^k * n are present also. Odd terms > 1 are given in A324112.

Examples

			87 is a term, as 87 = 3*29, A324054(3-1) = 4, A324054(29-1) = 156, and A324108(87) = 4*156 = 624 = A324054(87-1).
		

Crossrefs

Programs

  • PARI
    A000265(n) = (n/2^valuation(n, 2));
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    A324108(n) = { my(f=factor(n)); prod(i=1, #f~, A324054((f[i,1]^f[i,2])-1)); };
    isA324111(n) = ((1!=omega(n))&&(1!=omega(A000265(n)))&&(A324054(n-1)==A324108(n)));
    for(n=1,2^20,if(isA324111(n), print1(n,", ")))