cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A323244 a(1) = 0; and for n > 1, a(n) = A033879(A156552(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 6, 0, 5, 1, 10, 1, 16, 2, 6, 1, 12, 1, 18, -3, 18, 1, 22, -4, 46, 4, 22, 1, 10, 1, 30, 14, 82, -2, 14, 1, 256, -12, 22, 1, 36, 1, 66, 8, 226, 1, 46, -12, 19, 8, 130, 1, 28, -19, 70, -12, 748, 1, 42, 1, 1362, 16, 22, 10, 42, 1, 214, 254, 40, 1, 38, 1, 3838, 10, 406, -10, 106, 1, 78, -12, 5458, 1, 26, -72, 12250, -348, 30, 1, 12
Offset: 1

Views

Author

Antti Karttunen, Jan 10 2019

Keywords

Comments

After a(1) = 0, the other zeros occur for k >= 1, at A005940(1+A000396(k)), which, provided no odd perfect numbers exist, is equal to A324201(k) = A062457(A000043(k)): 9, 125, 161051, 410338673, ..., etc.
There are 2321 negative terms among the first 10000 terms.

Crossrefs

Cf. A324201 (positions of zeros, conjectured), A324551 (of negative terms), A324720 (of nonnegative terms), A324721 (of positive terms), A324731, A324732.
Cf. A329644 (Möbius transform).
Cf. A323174, A324055, A324185, A324546 for other permutations of deficiency, and also A324574, A324575, A324654.

Programs

  • Mathematica
    Array[2 # - If[# == 0, 0, DivisorSigma[1, #]] &@ Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &, 90] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A323244(n) = if(1==n, 0, my(k=A156552(n)); (2*k)-sigma(k));
    
  • Python
    from sympy import divisor_sigma, primepi, factorint
    def A323244(n): return (lambda n: (n<<1)-divisor_sigma(n))(sum((1< 1 else 0 # Chai Wah Wu, Mar 10 2023

Formula

a(n) = 2*A156552(n) - A323243(n).
a(1) = 0; and for n > 1, a(n) = A033879(A156552(n)).
a(n) = A323248(n) + A001222(n) = (A323247(n) - A323243(n)) + A001222(n).
From Antti Karttunen, Mar 12 2019 & Nov 23 2019: (Start)
a(n) = Sum_{d|n} (2*A297112(d) - A324543(d)) = Sum_{d|n} A329644(d).
A002487(a(n)) = A324115(n).
a(n) = A329638(n) - A329639(n).
a(n) = A329645(n) - A329646(n).
(End)

A324117 Number of odd divisors in A156552(n): a(1) = 0, for n > 1, a(n) = A001227(A156552(n)) = A000005(A322993(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 3, 4, 1, 2, 2, 4, 2, 4, 1, 4, 1, 2, 2, 4, 2, 4, 1, 2, 4, 4, 1, 2, 1, 2, 2, 8, 1, 2, 2, 3, 4, 2, 1, 2, 3, 2, 4, 6, 1, 2, 1, 4, 2, 6, 2, 4, 1, 4, 2, 2, 1, 4, 1, 4, 2, 4, 2, 4, 1, 2, 4, 4, 1, 6, 4, 8, 8, 8, 1, 6, 3, 4, 6, 12, 4, 4, 1, 3, 4, 4, 1, 6, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2019

Keywords

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A000005(A322993(n)) = A000005(A156552(2*A246277(n))) = A324105(2*A246277(n)).

A324116 a(n) = A002487(1+A323247(n)) = A324288(A156552(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 2, 5, 5, 1, 3, 1, 6, 7, 8, 1, 2, 1, 4, 9, 7, 1, 13, 7, 8, 5, 5, 1, 3, 1, 7, 11, 9, 10, 12, 1, 10, 13, 18, 1, 4, 1, 6, 8, 11, 1, 12, 9, 2, 15, 7, 1, 11, 13, 23, 17, 12, 1, 19, 1, 13, 11, 13, 16, 5, 1, 8, 19, 3, 1, 13, 1, 14, 7, 9, 13, 6, 1, 17, 10, 15, 1, 26, 19, 16, 21, 28, 1, 18, 17, 10, 23, 17, 22, 23, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2019

Keywords

Comments

Like A323902, this also has quite a moderate growth rate, even though a certain subset of terms of A156552 soon grow quite big.

Crossrefs

Programs

  • PARI
    A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); }; \\ So we use this one, modified from the one given in A002487
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A324288(n) = A002487(1+A005187(n));
    A324116(n) = A324288(A156552(n));

Formula

a(n) = A002487(1+A323247(n)) = A324288(A156552(n)).
a(p) = 1 for all primes p.

A324049 a(n) = A002487(A324051(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 2, 0, 1, 4, 3, 2, 1, 1, 2, 11, 2, 1, 4, 4, 4, 7, 5, 1, 1, 1, 5, 3, 3, 26, 4, 3, 11, 4, 3, 2, 1, 2, 5, 21, 4, 3, 6, 1, 5, 37, 7, 2, 5, 1, 7, 1, 3, 12, 9, 4, 40, 14, 8, 4, 76, 1, 6, 4, 8, 63, 5, 7, 3, 3, 1, 53, 27, 3, 9, 7, 5, 5, 10, 2, 199, 98, 10, 4, 37, 6, 4, 2, 4, 8, 25, 34, 104, 12, 3, 43, 6, 1, 4, 5, 2, 117, 13, 2, 1, 3, 7, 76, 4
Offset: 2

Views

Author

Antti Karttunen, Feb 22 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A002487(A324051(n)).

A324285 a(n) = A002487(A297168(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 2, 1, 3, 0, 3, 0, 4, 2, 3, 0, 4, 0, 5, 3, 5, 0, 4, 1, 6, 2, 7, 0, 5, 0, 4, 4, 7, 2, 7, 0, 8, 5, 7, 0, 7, 0, 9, 3, 9, 0, 5, 1, 5, 6, 11, 0, 8, 3, 10, 7, 10, 0, 9, 0, 11, 5, 5, 4, 13, 0, 13, 8, 6, 0, 10, 0, 12, 4, 15, 2, 19, 0, 9, 3, 13, 0, 11, 5, 14, 9, 13, 0, 11, 3, 17, 10, 15, 6, 6, 0, 6, 7, 9, 0, 25, 0, 16, 5
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A002487(A297168(n)).
Showing 1-5 of 5 results.