cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324189 a(n) = A324122(A163511(n)).

Original entry on oeis.org

0, 2, 6, 2, 14, 12, 0, 4, 30, 36, 36, 30, 24, 12, 16, 6, 60, 120, 96, 152, 90, 122, 90, 54, 48, 72, 48, 44, 36, 28, 16, 10, 126, 362, 360, 780, 272, 600, 464, 396, 192, 402, 360, 336, 216, 222, 168, 132, 120, 120, 216, 246, 144, 168, 128, 92, 80, 102, 48, 68, 0, 36, 32, 12, 254, 1092, 1080, 3900, 846, 3122, 2342, 2800, 576, 2016, 1824, 2360, 1080
Offset: 0

Views

Author

Antti Karttunen, Feb 17 2019

Keywords

Crossrefs

Cf. A324199 (positions of zeros).

Programs

  • PARI
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A324122(n) = (sigma(n) - gcd(sigma(n),n*numdiv(n)));
    A324189(n) = A324122(A163511(n));
    
  • PARI
    A324183(n) = if(!n,1,n = ((3<<#binary(n\2))-n-1); my(e=0,m=1); while(n>0, if(!(n%2), m *= (1+e); e=0, e++); n >>= 1); (m*(1+e)));
    A324184(n) = if(!n,1,my(p=2,mp=p*p,m=1); while(n>1, if(n%2, p=nextprime(1+p); mp = p*p, if((2==n)||!(n%4),mp *= p,m *= (mp-1)/(p-1))); n >>= 1); (m*(mp-1)/(p-1)));
    A324189(n) = (A324184(n) - gcd(A324184(n), A163511(n)*A324183(n)));

Formula

a(n) = A324184(n) - A324188(n) = A324184(n) - gcd(A324184(n),A163511(n)*A324183(n)).

A324349 a(n) = A324122(A005940(1+n)), where A005940 is the Doudna sequence and A324122(n) = sigma(n) - gcd(n*d(n), sigma(n)).

Original entry on oeis.org

0, 2, 2, 6, 4, 0, 12, 14, 6, 16, 12, 24, 30, 36, 36, 30, 10, 16, 28, 36, 44, 48, 72, 48, 54, 90, 122, 90, 152, 96, 120, 60, 12, 32, 36, 0, 68, 48, 102, 80, 92, 128, 168, 144, 246, 216, 120, 120, 132, 168, 222, 216, 336, 360, 402, 192, 396, 464, 600, 272, 780, 360, 362, 126, 16, 40, 52, 72, 80, 96, 150, 112, 84, 208, 264, 112, 366, 288, 312, 184, 164, 272, 360, 0, 568
Offset: 0

Views

Author

Antti Karttunen, Feb 24 2019

Keywords

Comments

Zeros occur in the same positions as in A324057, and can be obtained by sorting into ascending order the terms obtained with A156552(A001599(n)), n >= 1.

Crossrefs

Programs

Formula

a(n) = A324122(A005940(1+n)).
a(n) = A324054(n) - A324058(n).
For n > 0, a(n) = A324189(A054429(n)).

A324121 a(n) = gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).

Original entry on oeis.org

1, 1, 2, 1, 2, 12, 2, 1, 1, 2, 2, 4, 2, 8, 12, 1, 2, 3, 2, 6, 4, 4, 2, 12, 1, 2, 4, 56, 2, 24, 2, 3, 12, 2, 4, 1, 2, 4, 4, 10, 2, 48, 2, 12, 6, 8, 2, 4, 3, 3, 12, 2, 2, 24, 4, 8, 4, 2, 2, 24, 2, 8, 2, 1, 4, 48, 2, 6, 12, 16, 2, 3, 2, 2, 2, 4, 4, 24, 2, 2, 1, 2, 2, 112, 4, 4, 12, 4, 2, 18, 28, 24, 4, 8, 20, 36, 2, 3, 6, 1, 2, 24, 2, 2, 24
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Comments

Records 1, 2, 12, 56, 112, 120, 336, 720, 992, 2016, 4368, 8640, 14880, 16256, 26208, 59520, 78624, 120960, 131040, 191520, 227584, 297600, ... occur at positions: 1, 3, 6, 28, 84, 120, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 27846, 30240, 32760, 55860, 105664, 117800, ... . Note that A001599 is not a subsequence of the latter, as at least 18620 (present in A001599) is missing.

Crossrefs

Programs

  • Mathematica
    Table[GCD[n DivisorSigma[0,n],DivisorSigma[1,n]],{n,120}] (* Harvey P. Dale, Feb 17 2023 *)
  • PARI
    A324121(n) = gcd(sigma(n),n*numdiv(n));

Formula

a(n) = gcd(A000203(n), A038040(n)).
a(n) = A324058(A156552(n)).
Showing 1-3 of 3 results.