cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324129 a(n) = n*Fibonacci(n) + ((-1)^n + 1)/2.

Original entry on oeis.org

1, 1, 3, 6, 13, 25, 49, 91, 169, 306, 551, 979, 1729, 3029, 5279, 9150, 15793, 27149, 46513, 79439, 135301, 229866, 389643, 659111, 1112833, 1875625, 3156219, 5303286, 8898709, 14912641, 24961201, 41734339, 69705889, 116311074, 193898159, 322961275
Offset: 0

Views

Author

N. J. A. Sloane, Feb 20 2019

Keywords

Comments

Equals A324128(n)/2.
This sequence is distantly related to (one-half) the number of losing strings using a binary alphabet in the "same game" described by Burns and Purcell (2007) and Kurz (2001). - Petros Hadjicostas, Sep 01 2019

Crossrefs

Programs

  • Magma
    [n*Fibonacci(n)+((-1)^n+1)/2:n in [0..35]]; // Marius A. Burtea, Aug 29 2019
  • Mathematica
    A324129[n_]:=Fibonacci[n]n+((-1)^n+1)/2;Array[A324129,50,0] (* Paolo Xausa, Nov 15 2023 *)
  • PARI
    Vec((1 - x - x^2 + 2*x^3 + x^4 - x^5) / ((1 - x)*(1 + x)*(1 - x - x^2)^2) + O(x^40)) \\ Colin Barker, Mar 03 2019
    

Formula

From Chai Wah Wu, Feb 20 2019: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) - 2*a(n-4) + 2*a(n-5) + a(n-6) for n > 5.
G.f.: (x^5 - x^4 - 2*x^3 + x^2 + x - 1)/((x - 1)*(x + 1)*(x^2 + x - 1)^2). (End)
a(n) = A309874(n)/2 + A099920(n-1) = 2^(n-1) - A035615(n)/2 + A099920(n-1) = A323812(n) + A099920(n-1) for n >= 2. [Sequence A309874 counts the losing strings while A035615 counts the winning strings using a binary alphabet in the "same game". See Burns and Purcell (2007) and Kurz (2001).] - Petros Hadjicostas, Sep 01 2019