A324151 a(n) = (2/((n+1)*(n+2)))*multinomial(3*n;n,n,n).
1, 2, 15, 168, 2310, 36036, 612612, 11085360, 210344706, 4143153300, 84106011990, 1750346095680, 37194854533200, 804553314979680, 17671438882589400, 393345439598342880, 8858467087621013610, 201578121034100464500, 4629577513083174001350, 107211268724031397926000
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..704
- Luis Fredes and Avelio Sepulveda, Tree-decorated planar maps, arXiv:1901.04981 [math.CO], 2019. See Remark 4.6.
Programs
-
Maple
a:= n-> (2/((n+1)*(n+2)))*combinat[multinomial](3*n, n$3): seq(a(n), n=0..20); # Alois P. Heinz, Jan 25 2022
-
Mathematica
c[m_, n_] := m Product[1/(n + i), {i, m}] (Multinomial @@ ConstantArray[n, m + 1]); Array[c[2, #] &, 20, 0] (* Michael De Vlieger, Mar 01 2019 *)
-
Python
from sympy.ntheory import multinomial_coefficients def A324151(n): return 2*multinomial_coefficients(3,3*n)[(n,n,n)]//(n+1)//(n+2) # Chai Wah Wu, Jan 25 2022
Comments