cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324152 a(0)=1; for n>0, a(n) = (3/((n+1)*(n+2)*(n+3))) * multinomial(4*n;n,n,n,n).

Original entry on oeis.org

1, 3, 126, 9240, 900900, 104756652, 13742520792, 1968826448160, 301700280152700, 48756255150603000, 8226155369009738160, 1438285479229504301760, 259131100507849025033760, 47897087290614993606462000, 9050997011303368719799740000
Offset: 0

Views

Author

Keywords

Comments

It is conjectured that a(n) is always an integer.
If all terms except the first are doubled, we get A324478, which IS known to be integral.

Crossrefs

Cf. A000108, A324151, A324465 (exponent of 2), A324467, A324478.

Programs

  • Magma
    [1] cat [n le 1 select 3 else Self(n-1)*4*(4*n-3)*(4*n-2)*(4*n-1)/((n)^2*(n+3)): n in [1..20]]; // Vincenzo Librandi, Mar 11 2019
  • Mathematica
    c[m_, n_] := m Product[1/(n + i), {i, m}] (Multinomial @@ ConstantArray[n, m + 1]); {1}~Join~Array[c[3, #] &, 14] (* Michael De Vlieger, Mar 01 2019 *)
    Flatten[{1, Table[3*(4*n)! / ((n!)^3 * (n+3)!), {n, 1, 15}]}] (* Vaclav Kotesovec, Jul 21 2019 *)

Formula

a(n+1) = a(n)*4*(4*n+1)*(4*n+2)*(4*n+3)/((n+1)^2*(n+4)) for n>0.
From Vaclav Kotesovec, Jul 21 2019: (Start)
For n>0, a(n) = 3*(4*n)! / ((n!)^3 * (n+3)!).
a(n) ~ 3 * 2^(8*n - 1/2) / (Pi^(3/2) * n^(9/2)). (End)