cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324465 Exponent of highest power of 2 that divides A324152(n).

Original entry on oeis.org

0, 0, 1, 3, 2, 2, 3, 5, 2, 3, 4, 6, 5, 4, 5, 7, 2, 3, 4, 6, 5, 5, 6, 8, 5, 6, 7, 9, 8, 6, 7, 9, 2, 3, 4, 6, 5, 5, 6, 8, 5, 6, 7, 9, 8, 7, 8, 10, 5, 6, 7, 9, 8, 8, 9, 11, 8, 9, 10, 12, 11, 8, 9, 11, 2, 3, 4, 6, 5, 5, 6, 8, 5, 6, 7, 9, 8, 7, 8, 10, 5, 6, 7, 9
Offset: 0

Views

Author

N. J. A. Sloane, Mar 01 2019

Keywords

Comments

First occurrence of k=0,1,2,...: 0, 2, 4, 3, 10, 7, 11, 15, 23, 27, 47, 55, 59, 111, 119, 123, 239, 247, 251, 495, 503, 507, 1007, 1015, 1019, 2031, 2039, 2043, 4079, 4087, 4091, 8175, 8183, 8187, 16367, 16375, 16379, 32751, 32759, 32763, 65519, 65527, 65531, 131055, 131063, 131067, ..., . Robert G. Wilson v, Mar 01 2019

Crossrefs

Cf. A000120 (binary weight), A007814, A324152, A324467.

Programs

  • Mathematica
    f[n_] := IntegerExponent[(3/((n + 1)(n + 2)(n + 3)))*Multinomial[n, n, n, n], 2]; f[0] = 0; Array[f, 84, 0] (* Robert G. Wilson v, Mar 01 2019 *)
  • PARI
    a(n) = 3*hammingweight(n) - valuation((n+1)*(n+2)*(n+3), 2); \\ Michel Marcus, Jul 10 2022

Formula

a(n) = 3*wt(n) - (2-adic valuation of (n+1)*(n+2)*(n+3))
= 3*A000120(n) - (A007814(n+1)+A007814(n+2)+A007814(n+3)).
E.g. if n = 14 = 1110_2, with weight 3, we get a(14) = 3*3 - 2-adic valuation of 15*16*17 = 9 - 4 = 5.

A324151 a(n) = (2/((n+1)*(n+2)))*multinomial(3*n;n,n,n).

Original entry on oeis.org

1, 2, 15, 168, 2310, 36036, 612612, 11085360, 210344706, 4143153300, 84106011990, 1750346095680, 37194854533200, 804553314979680, 17671438882589400, 393345439598342880, 8858467087621013610, 201578121034100464500, 4629577513083174001350, 107211268724031397926000
Offset: 0

Views

Author

Keywords

Comments

a(n) is an integer, because as Fredes and Sepulveda show, it gives the number of spanning tree decorated quadrangulations rooted in the tree.
For a direct proof, a(n) may also be written as (binomial(3*n,n)/(2*n+1))*(binomial(2*n+2,n)/(n+1)) = A001764(n)*A000108(n+1), and so is an integer. - N. J. A. Sloane, Mar 01 2019

Crossrefs

Programs

  • Maple
    a:= n-> (2/((n+1)*(n+2)))*combinat[multinomial](3*n, n$3):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 25 2022
  • Mathematica
    c[m_, n_] := m Product[1/(n + i), {i, m}] (Multinomial @@ ConstantArray[n, m + 1]); Array[c[2, #] &, 20, 0] (* Michael De Vlieger, Mar 01 2019 *)
  • Python
    from sympy.ntheory import multinomial_coefficients
    def A324151(n): return 2*multinomial_coefficients(3,3*n)[(n,n,n)]//(n+1)//(n+2) # Chai Wah Wu, Jan 25 2022

A324478 a(n) = (6/((n+1)*(n+2)*(n+3))) * multinomial(4*n;n,n,n,n).

Original entry on oeis.org

1, 6, 252, 18480, 1801800, 209513304, 27485041584, 3937652896320, 603400560305400, 97512510301206000, 16452310738019476320, 2876570958459008603520, 518262201015698050067520, 95794174581229987212924000, 18101994022606737439599480000
Offset: 0

Views

Author

N. J. A. Sloane, Mar 10 2019, following a suggestion from Luis Fredes and Avelio Sepulveda

Keywords

Comments

Theorem (Luis Fredes, Mar 04 2019): (Start)
a(n) is an integer for all n >= 0.
Proof:
a(n) = (6/((n+1)*(n+2)*(n+3)))*multinomial(4*n;n,n,n,n) = multinomial(4*n;n,n,n,n) - multinomial(4*n;n+3,n-3,n,n) + 3*multinomial(4*n;n+2,n-2,n,n) + 15*multinomial(4*n;n+3,n-2,n-1,n) - 18*multinomial(4*n;n+3,n-1,n-1,n-1).
The right hand side is equal (after some manipulation) to
(f(n)/((n+1)*(n+2)*(n+3)))*multinomial(4*n;n,n,n,n)
where f(n) = (n+1)*(n+2)*(n+3) - (n-1)*(n-2)*n + 3*(n-1)*n*(n+3) + 15*(n-1)*n^2 - 18*n^3 = 6. QED (End)
(11!/12)*a(n) is divisible by ((n + 1)*(n + 2)*(n + 3))^2 for all n. More generally, we conjecture that there is a constant C(r) such that C(r)*(4*n)!/(n!*(n+r)!^3) is an integer for all n. Calculation suggests that we may take C(r) = (1/8)*(4*r)!/r! for r >= 1. - Peter Bala, Feb 28 2023

Crossrefs

Cf. A324152.

Programs

  • Maple
    a:= n-> 6*combinat[multinomial](4*n, n$4)/((n+1)*(n+2)*(n+3)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 11 2019
  • Mathematica
    c[m_,n_]:=2m Product[1/(n+i), {i, m}] (Multinomial@@ConstantArray[n, m+1]);{1}~Join~Array[c[3, #]&, 20] (* Vincenzo Librandi, Mar 11 2019 *)
    Flatten[{1, Table[6*(4*n)! / ((n!)^3 * (n+3)!), {n, 1, 15}]}] (* Vaclav Kotesovec, Jul 21 2019 *)

Formula

From Vaclav Kotesovec, Jul 21 2019: (Start)
For n>0, a(n) = 6*(4*n)! / ((n!)^3 * (n+3)!).
a(n) ~ 6 * 2^(8*n - 1/2) / (Pi^(3/2) * n^(9/2)). (End)
Showing 1-3 of 3 results.