A324152 a(0)=1; for n>0, a(n) = (3/((n+1)*(n+2)*(n+3))) * multinomial(4*n;n,n,n,n).
1, 3, 126, 9240, 900900, 104756652, 13742520792, 1968826448160, 301700280152700, 48756255150603000, 8226155369009738160, 1438285479229504301760, 259131100507849025033760, 47897087290614993606462000, 9050997011303368719799740000
Offset: 0
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..360
- Luis Fredes, Avelio Sepulveda, Tree-decorated planar maps, arXiv:1901.04981 [math.CO], 2019. See Remark 4.6.
Programs
-
Magma
[1] cat [n le 1 select 3 else Self(n-1)*4*(4*n-3)*(4*n-2)*(4*n-1)/((n)^2*(n+3)): n in [1..20]]; // Vincenzo Librandi, Mar 11 2019
-
Mathematica
c[m_, n_] := m Product[1/(n + i), {i, m}] (Multinomial @@ ConstantArray[n, m + 1]); {1}~Join~Array[c[3, #] &, 14] (* Michael De Vlieger, Mar 01 2019 *) Flatten[{1, Table[3*(4*n)! / ((n!)^3 * (n+3)!), {n, 1, 15}]}] (* Vaclav Kotesovec, Jul 21 2019 *)
Formula
a(n+1) = a(n)*4*(4*n+1)*(4*n+2)*(4*n+3)/((n+1)^2*(n+4)) for n>0.
From Vaclav Kotesovec, Jul 21 2019: (Start)
For n>0, a(n) = 3*(4*n)! / ((n!)^3 * (n+3)!).
a(n) ~ 3 * 2^(8*n - 1/2) / (Pi^(3/2) * n^(9/2)). (End)
Comments