A324155 Greatest number N such that the number of primes (<= N) <= the number of base-n-zerofree numbers (<= N).
4, 498, 1139556, 33182655688
Offset: 2
Examples
a(2) = 4, since pi(1) = 0 <= 1 = numOfZerofreeNum_2(1), pi(2) = 1 <= 1 = numOfZerofreeNum_2(2), pi(3) = 2 <= 2 = numOfZerofreeNum_2(3), pi(4) = 2 <= 2 = numOfZerofreeNum_2(3), and pi(m) > numOfZerofreeNum_2(m) for m > 4, where numOfZerofreeNum_2(m) is the number of base-2-zerofree numbers <= m and pi(m) = number of primes <= m. The first base-2-zerofree numbers are 1 = 1_2, 3 = 11_2, 7 = 111_2, ...
Formula
a(n) = max(k | pi(k) <= numOfZerofreeNum_n(k)), where numOfZerofreeNum_n(k) is the number of base-n zerofree numbers <= k ((see A324161 for general formulas regarding numOfZerofreeNum _n(k))).
a(n) >= A324154(n) + 1.
Estimate of the n-th term (n > 2):
a(n) < e*(p*log(p*log((e/(e-1))*p*log(p))))^(1/(1-d)),
a(n) > e^1.1*(q*log(q*log(q*log(q))))^(1/(1-d)),
where p := (n-1)/((n-2)*(1-d(n)))*e^(-(1-d)), q := (n-1)^d/((n-2)*(1-d(n)))*e^(-1.1*(1-d)), d := d(n) := log(n-1)/log(n).
Also, but more imprecise:
a(n) < e*((e/(e-1))*p*log(p))^(1/(1-d)),
a(n) < e*((e/(e-1))*p*log(p))^((n-1/2)*log(n)),
a(n) < n*((e/(e-1))*n*log(n)*log(n*log(n)))^((n-1/2)*log(n)), n > 3.
Asymptotic behavior:
a(n) = O(n*((e/(e-1))*n*log(n)*log(n*log(n)))^(n*log(n))).
a(n) = O(n*((e+1)/(e-1)*n*log(n)^2)^(n*log(n))).
Comments