With m := floor(log_10(n)); k := Max_{j | j=1..m and (floor(n/10^j) mod 10)*j = 0} = digit position of the leftmost '0' in n counted from the right (starting with 0), k = 0 if there is no '0' digit; b(n,k) := floor(n/10^k)*10^k:
a(n) = n - 1 - Sum_{j=1..m} floor((b(n,k+1)-1)/10^j)*9^(j-1), if k = 0 (valid for n > 9),
a(n) = b(n,k) - 1 - Sum_{j=1..m} floor((b(n,k)-1)/10^j)*9^(j-1), if k > 0 (valid for n > 0),
a(n) = b(n,k) - 1 + ceiling(fract(n/10))*(1-ceiling(k/(m+1))) - Sum_{j=1..m} floor((b(n,k)-1)/10^j)*9^(j-1) (all k, valid for n > 0).
A052382(a(n)) = n, iff n is a zerofree number.
a(10*n + k) >= 9*a(n) + k, k=0..9, equality holds, if n is a zerofree number (i.e., contains no '0'-digit).
a(10*
A052382(n) + k) = 9*n + k, k=0..9, n > 0.
Values for special indices:
a(k*(10^n - 1)/9 - j) = k*(9^n - 1)/8 - j, n > 0, k = 1, 2, ... 9, j = 0, 1, 2, ... k.
a(k*10^n - j) = k*9^n + (9^n - 1)/8 - j, n >= 0, k = 1, 2, ... 10, j = 1, 2, ... 10.
a(k*10^n + j) = k*9^n + (9^n - 1)/8 - 1, n > 0, k = 1, 2, ... 10, j = 0, 1, 2, ... (10^(n+1)-1)/9 - 10^n - 1.
With: d := log_10(9) = 0.95424250943932...
Upper bound:
a(n) <= (9*(n+1)^d - 1)/8 - 1,
equality holds for n = 10^k - 1, k >= 0.
Lower bound:
a(n) >= ((9*n + 10)^d - 1)/8 - 1,
equality holds for n = (10^k - 1)/9 - 1, k > 0.
Asymptotic behavior:
a(n) <= (9/8)*n^d*(1 + O(1/n)) - 9/8.
a(n) >= (9^d/8)*n^d*(1 + O(1/n)) - 9/8.
a(n) = O(n^d) = O(n^0.954242509...).
Lower and upper limits:
lim inf a(n)/n^d = 9^d/8 = 1.0173931195971..., for n -> infinity.
lim sup a(n)/n^d = 9/8, for n -> infinity.
Formulas for general bases b > 2:
With m := floor(log_b(n)); k := Max_{j | j=1..m and (floor(n/b^j) mod b)*j = 0} = digit position of the leftmost '0' in n counted from the right (starting with 0), k = 0 if there is no '0' digit; b(n,k):= floor(n/b^k)*b^k:
a(n) = n - 1 - Sum_{j=1..m} floor((b(n,k+1)-1)/b^j)*(b-1)^(j-1), if k = 0, valid for n > b-1;
a(n) = b(n,k) - 1 - Sum_{j=1..m} floor((b(n,k)-1)/b^j)*(b-1)^(j-1), if k > 0, valid for n > 0;
a(n) = b(n,k) - 1 + ceiling(fract(n/b))*(1-ceiling(k/(m+1))) - Sum_{j=1..m} floor((b(n,k)-1)/b^j)*(b-1)^(j-1), (all k, valid for n > 0).
Formula for base b = 2: a(n) = floor(log_2(n + 1)).
With d := d(b) := log(b - 1)/log(b).
Upper bound (b = 10 for this sequence):
a(n) <= ((b - 1)*(n + 1)^d - 1)/(b - 2) - 1,
equality holds for n = b^k - 1, k >= 0.
Lower bound (b = 10 for this sequence):
a(n) >= (((b - 1)*n + b)^d - 1)/(b - 2) - 1,
equality holds for n = (b^k - 1)/(b - 1) - 1, k > 0.
Asymptotic behavior (b = 10 for this sequence):
a(n) = O(n^d(b)), for b > 2,
a(n) = O(log(n)), for b = 2.
Lower and upper limits:
lim inf a(n)/n^d = (b - 1)^d/(b - 2), for n -> infinity, for b > 2.
lim sup a(n)/n^d = (b - 1)/(b - 2), for n -> infinity, for b > 2.
In case of b = 2:
lim a(n)/log(n) = 1/log(2), for n -> infinity.
(End)
Comments