cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324167 Number of non-crossing antichain covers of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 9, 67, 633, 6763, 77766, 938957, 11739033, 150649945, 1973059212, 26265513030, 354344889798, 4833929879517, 66568517557803, 924166526830701, 12920482325488761, 181750521972603049, 2570566932237176232, 36532394627404815308, 521439507533582646156
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(3) = 9 antichains:
  {{1,2,3}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Cf. A000108, A000124, A000372 (antichains), A001006, A006126 (antichain covers), A014466, A048143, A054726 (non-crossing graphs), A099947, A261005, A283877, A306438.
Cf. A324166, A324168, A324169, A324170, A324171, A324173, A359984 (no singletons).

Programs

  • Mathematica
    nn=6;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Inverse binomial transform of A324168.
Binomial transform of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023