cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324168 Number of non-crossing antichains of nonempty subsets of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 19, 120, 1084, 11783, 141110, 1791156, 23646352, 321220257, 4459886776, 63000867229, 902528825332, 13080523942476, 191445447535373, 2825542818304080, 42005234042942228, 628422035415996065, 9454076958795999908, 142933849346150225253, 2170556938059142024688
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(3) = 19 non-crossing antichains:
  {}  {}     {}        {}
      {{1}}  {{1}}     {{1}}
             {{2}}     {{2}}
             {{12}}    {{3}}
             {{1}{2}}  {{12}}
                       {{13}}
                       {{23}}
                       {{123}}
                       {{1}{2}}
                       {{1}{3}}
                       {{2}{3}}
                       {{1}{23}}
                       {{2}{13}}
                       {{3}{12}}
                       {{12}{13}}
                       {{12}{23}}
                       {{13}{23}}
                       {{1}{2}{3}}
                       {{12}{13}{23}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A000372 (antichains), A001006, A001263, A006126 (antichain covers), A014466 (nonempty antichains), A054726 (non-crossing graphs), A099947, A261005, A306438.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-2*x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Binomial transform of A324167.
G.f.: A(x) = B(x/(1-2*x))/x where B(x)/x is the g.f. of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023