cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A324170 Numbers whose multiset multisystem (A302242) is crossing.

Original entry on oeis.org

2117, 3973, 4234, 4843, 5183, 5249, 5891, 6351, 6757, 7181, 7801, 7946, 8249, 8468, 8903, 9193, 9686, 9727, 10019, 10063, 10366, 10498, 10585, 11051, 11513, 11567, 11782, 11857, 11919, 12557, 12629, 12702, 12851, 13021, 13193, 13459, 13514, 13631, 14123, 14362
Offset: 1

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem of n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset of multisets is crossing if it contains a 2-element submultiset of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The sequence of terms together with their multiset multisystems begins:
  2117: {{1,3},{2,4}}
  3973: {{1,3},{2,5}}
  4234: {{},{1,3},{2,4}}
  4843: {{1,3},{2,6}}
  5183: {{1,1,3},{2,4}}
  5249: {{1,3},{1,2,4}}
  5891: {{1,4},{2,5}}
  6351: {{1},{1,3},{2,4}}
  6757: {{1,3},{2,7}}
  7181: {{1,4},{2,6}}
  7801: {{1,3},{2,8}}
  7946: {{},{1,3},{2,5}}
  8249: {{2,4},{1,2,3}}
  8468: {{},{},{1,3},{2,4}}
  8903: {{1,3},{2,2,4}}
  9193: {{1,3},{1,2,5}}
  9686: {{},{1,3},{2,6}}
  9727: {{1,1,3},{2,5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A324172 Number of subsets of {1,...,n} that cross their complement.

Original entry on oeis.org

0, 0, 0, 0, 2, 10, 32, 84, 198, 438, 932, 1936, 3962, 8034, 16200, 32556, 65294, 130798, 261836, 523944, 1048194, 2096730, 4193840, 8388100, 16776662, 33553830, 67108212, 134217024, 268434698, 536870098, 1073740952, 2147482716, 4294966302, 8589933534, 17179868060
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

Two sets cross each other if they are of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
Also the number of verex cuts in the wheel graph on n nodes. - Eric W. Weisstein, Apr 22 2023

Examples

			The a(5) = 10 subsets are {1,3}, {1,4}, {2,4}, {2,5}, {3,5}, {1,2,4}, {1,3,4}, {1,3,5}, {2,3,5}, {2,4,5}.
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    concat([0,0,0,0], Vec(2*x^4 / ((1 - x)^3*(1 - 2*x)) + O(x^40))) \\ Colin Barker, Feb 19 2019

Formula

a(0) = 0; a(n) = 2^n - n^2 + n - 2.
a(n) = 2*A002662(n-1) for n > 0.
G.f.: 2*x^4/((1-2*x)*(1-x)^3).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n>4. - Colin Barker, Feb 18 2019

A324167 Number of non-crossing antichain covers of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 9, 67, 633, 6763, 77766, 938957, 11739033, 150649945, 1973059212, 26265513030, 354344889798, 4833929879517, 66568517557803, 924166526830701, 12920482325488761, 181750521972603049, 2570566932237176232, 36532394627404815308, 521439507533582646156
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(3) = 9 antichains:
  {{1,2,3}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Cf. A000108, A000124, A000372 (antichains), A001006, A006126 (antichain covers), A014466, A048143, A054726 (non-crossing graphs), A099947, A261005, A283877, A306438.
Cf. A324166, A324168, A324169, A324170, A324171, A324173, A359984 (no singletons).

Programs

  • Mathematica
    nn=6;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Inverse binomial transform of A324168.
Binomial transform of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023

A324171 Number of non-crossing multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 1, 4, 16, 75, 378, 2042, 11489, 66697
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers.
A multiset partition is crossing if it has a 2-element submultiset of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The A255906(5) - a(5) = 22 crossing multiset partitions:
  {{13}{124}}  {{1}{13}{24}}
  {{13}{224}}  {{1}{24}{35}}
  {{13}{234}}  {{2}{13}{24}}
  {{13}{244}}  {{2}{14}{35}}
  {{13}{245}}  {{3}{13}{24}}
  {{14}{235}}  {{3}{14}{25}}
  {{24}{113}}  {{4}{13}{24}}
  {{24}{123}}  {{4}{13}{25}}
  {{24}{133}}  {{5}{13}{24}}
  {{24}{134}}
  {{24}{135}}
  {{25}{134}}
  {{35}{124}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A001006, A001055, A001263, A007297, A054726 (non-crossing graphs), A099947, A194560, A255906 (multiset partitions of normal multisets), A306438.

Programs

  • Mathematica
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[Select[mps[m],nonXQ]],{m,allnorm[n]}],{n,0,8}]

A324328 Number of topologically connected chord graphs on a subset of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 27, 354
Offset: 0

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected, where two edges cross each other if they are of the form {{x,y},{z,t}} with x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(5) = 27 graphs:
  {}  {}  {}      {}      {}          {}
          {{12}}  {{12}}  {{12}}      {{12}}
                  {{13}}  {{13}}      {{13}}
                  {{23}}  {{14}}      {{14}}
                          {{23}}      {{15}}
                          {{24}}      {{23}}
                          {{34}}      {{24}}
                          {{13}{24}}  {{25}}
                                      {{34}}
                                      {{35}}
                                      {{45}}
                                      {{13}{24}}
                                      {{13}{25}}
                                      {{14}{25}}
                                      {{14}{35}}
                                      {{24}{35}}
                                      {{13}{14}{25}}
                                      {{13}{24}{25}}
                                      {{13}{24}{35}}
                                      {{14}{24}{35}}
                                      {{14}{25}{35}}
                                      {{13}{14}{24}{25}}
                                      {{13}{14}{24}{35}}
                                      {{13}{14}{25}{35}}
                                      {{13}{24}{25}{35}}
                                      {{14}{24}{25}{35}}
                                      {{13}{14}{24}{25}{35}}
		

Crossrefs

Cf. A000108, A000699, A001764, A002061, A007297, A016098, A054726 (non-crossing chord graphs), A099947, A136653, A268814.
Cf. A324168, A324169, A324172, A324173, A324323, A324327 (covering case).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[crosscmpts[#]]<=1&]],{n,0,5}]

Formula

Binomial transform of A324327.

A324326 Number of crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 10, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 36, 0, 14, 0, 0, 0, 25, 0, 0, 0, 71, 0, 0, 0, 0, 0, 0, 0, 103, 0, 0, 0, 0, 0, 0, 0, 75
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} with x < z < y < t or z < x < t < y.

Examples

			The a(36) = 10 crossing multiset partitions of {1,1,2,2,3,4}:
  {{1,3},{1,2,2,4}}
  {{2,4},{1,1,2,3}}
  {{1,1,3},{2,2,4}}
  {{1,2,3},{1,2,4}}
  {{1},{1,3},{2,2,4}}
  {{1},{2,4},{1,2,3}}
  {{2},{1,3},{1,2,4}}
  {{2},{1,1,3},{2,4}}
  {{1,2},{1,3},{2,4}}
  {{1},{2},{1,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324325(n) = A318284(n).

A359984 Number of non-crossing antichain covers of {1,...,n} without singletons.

Original entry on oeis.org

1, 0, 1, 5, 40, 372, 3815, 41652, 474980, 5591912, 67454545, 829438722, 10358083621, 131013535954, 1674940506728, 21608978465341, 280976960703472, 3678460005228692, 48446069275681169, 641429612434785006, 8532711384899213885, 113988520118626013998
Offset: 0

Views

Author

Andrew Howroyd, Jan 20 2023

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
All sets in the antichain include at least two vertices.

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
The last 4 of these correspond to the graphs of A324169.
		

Crossrefs

Programs

  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(1 + x^2*f^2 - 3*x^3*f^3) } \\ Andrew Howroyd, Jan 20 2023

Formula

Inverse binomial transform of A324167.
G.f.: 1 + x^2*F(x)^2 - 3*x^3*F(x)^3 where F(x) satisfies F(x) = 1 + (4*x + x^2)*F(x)^2 - 3*x^2*(1 + x)*F(x)^3 = 1 +4*x +30*x^2 +273*x^3 +2770*x^4 +30059*x^5+....
a(n) >= A324169(n).
Conjecture D-finite with recurrence 8*n*(n-1)*a(n) -4*(n-1)*(56*n-145)*a(n-1) +4*(101*n^2-682*n+996)*a(n-2) +2*(6200*n^2-47903*n+88131)*a(n-3) +2*(26985*n^2-234056*n+491978)*a(n-4) +2*(62749*n^2-628865*n+1584314)*a(n-5) +(n-5)*(121577*n-667756)*a(n-6) +38285*(n-5)*(n-6)*a(n-7)=0. - R. J. Mathar, Mar 10 2023

A324325 Number of non-crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 14, 15, 26, 22, 21, 29, 19, 30, 33, 31, 30, 66, 38, 42, 52, 56, 42, 47, 45, 57, 82, 77, 67, 77, 67, 101, 98, 135, 64, 137, 97, 176, 104, 109, 109, 118, 105, 231, 213, 97, 127, 181, 139, 297, 173, 385, 195, 269
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(16) = 14 non-crossing multiset partitions of the multiset {1,2,3,4}:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{3,4}}
  {{1,4},{2,3}}
  {{1},{2},{3,4}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{1,2},{4}}
  {{1},{2},{3},{4}}
Missing from this list is {{1,3},{2,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324326(n) = A318284(n).
Showing 1-8 of 8 results.