cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A324173 Regular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with k topologically connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 2, 6, 6, 1, 0, 6, 15, 20, 10, 1, 0, 21, 51, 65, 50, 15, 1, 0, 85, 203, 252, 210, 105, 21, 1, 0, 385, 912, 1120, 938, 560, 196, 28, 1, 0, 1907, 4527, 5520, 4620, 2898, 1302, 336, 36, 1, 0, 10205, 24370, 29700, 24780, 15792, 7812, 2730, 540, 45, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A set partition is crossing if it contains a pair of blocks of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
The topologically connected components of a set partition correspond to the blocks of its minimal non-crossing coarsening.

Examples

			Triangle begins:
     1
     0     1
     0     1     1
     0     1     3     1
     0     2     6     6     1
     0     6    15    20    10     1
     0    21    51    65    50    15     1
     0    85   203   252   210   105    21     1
     0   385   912  1120   938   560   196    28     1
     0  1907  4527  5520  4620  2898  1302   336    36     1
     0 10205 24370 29700 24780 15792  7812  2730   540    45     1
Row n = 4 counts the following set partitions:
  {{1234}}    {{1}{234}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
  {{13}{24}}  {{12}{34}}  {{1}{23}{4}}
              {{123}{4}}  {{12}{3}{4}}
              {{124}{3}}  {{1}{24}{3}}
              {{134}{2}}  {{13}{2}{4}}
              {{14}{23}}  {{14}{2}{3}}
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]==k&]],{n,0,8},{k,0,n}]

A326210 Number of labeled simple graphs with vertices {1..n} containing a nesting pair of edges, where two edges {a,b}, {c,d} are nesting if a < c and b > d or a > c and b < d.

Original entry on oeis.org

0, 0, 0, 0, 16, 672, 29888, 2071936, 268204288, 68717285888, 35184350796800, 36028796807919616, 73786976292712960000, 302231454903635611721728, 2475880078570760326175178752, 40564819207303340845566684397568, 1329227995784915872903782635437883392
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

Also simple graphs containing a crossing pair of edges, where two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b.
Also simple graphs such that, if the edges are listed in lexicographic order, their maxima (seconds) are not weakly increasing.

Examples

			The a(4) = 16 nesting edge-sets:
  {14,23}
  {12,14,23}
  {13,14,23}
  {14,23,24}
  {14,23,34}
  {12,13,14,23}
  {12,14,23,24}
  {12,14,23,34}
  {13,14,23,24}
  {13,14,23,34}
  {14,23,24,34}
  {12,13,14,23,24}
  {12,13,14,23,34}
  {12,14,23,24,34}
  {13,14,23,24,34}
  {12,13,14,23,24,34}
The a(4) = 16 crossing edge-sets:
  {13,24}
  {12,13,24}
  {13,14,24}
  {13,23,24}
  {13,24,34}
  {12,13,14,24}
  {12,13,23,24}
  {12,13,24,34}
  {13,14,23,24}
  {13,14,24,34}
  {13,23,24,34}
  {12,13,14,23,24}
  {12,13,14,24,34}
  {12,13,23,24,34}
  {13,14,23,24,34}
  {12,13,14,23,24,34}
		

Crossrefs

Non-nesting graphs are A054726.
Nesting digraphs are A326209.
Nesting (or crossing) set partitions are A016098.
MM-numbers of nesting multiset partitions are A326256.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!OrderedQ[Last/@#]&]],{n,0,5}]
  • PARI
    seq(n)={my(p=1 + 3/2*x - x^2 - x/2*sqrt(1 - 12*x + 4*x^2 + O(x^n))); concat([0], vector(n, k, 2^binomial(k,2)-polcoef(p,k)))} \\ Andrew Howroyd, Aug 26 2019

Formula

A006125(n) = a(n) + A054726(n).

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 26 2019

A326243 Number of capturing set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 1, 11, 80, 503, 2993, 17609, 105017, 644528, 4107600, 27313805, 189866541, 1379728831, 10470032837, 82833202559, 681977545967, 5832430910181, 51723181525978, 474866750479993, 4506706112772881, 44151975623559477, 445958774322599940, 4638590033810841345
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

A set partition is capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. This is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The a(5) = 11 capturing set partitions:
  {{1,2,5},{3,4}}
  {{1,3,4},{2,5}}
  {{1,3,5},{2,4}}
  {{1,4},{2,3,5}}
  {{1,4,5},{2,3}}
  {{1,5},{2,3,4}}
  {{1},{2,5},{3,4}}
  {{1,4},{2,3},{5}}
  {{1,5},{2},{3,4}}
  {{1,5},{2,3},{4}}
  {{1,5},{2,4},{3}}
		

Crossrefs

Non-capturing set partitions are A054391.
Crossing and nesting set partitions are (both) A016098.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xt||x>z&&y
    				

Formula

a(n) = A000110(n) - A054391(n).

Extensions

a(12) and beyond from Christian Sievers, Aug 23 2024

A326211 Number of unsortable normal multiset partitions of weight n.

Original entry on oeis.org

0, 0, 0, 1, 17, 170, 1455, 11678, 92871, 752473
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers. It is unsortable if no permutation has an ordered concatenation, or equivalently if the concatenation of its lexicographically-ordered parts is not weakly increasing. For example, the multiset partition {{1,2},{1,1,1},{2,2,2}} is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The a(3) = 1 and a(4) = 17 multiset partitions:
  {{1,3},{2}}  {{1,1,3},{2}}
               {{1,2},{1,2}}
               {{1,2},{1,3}}
               {{1,2,3},{2}}
               {{1,2,4},{3}}
               {{1,3},{2,2}}
               {{1,3},{2,3}}
               {{1,3},{2,4}}
               {{1,3,3},{2}}
               {{1,3,4},{2}}
               {{1,4},{2,3}}
               {{1},{1,3},{2}}
               {{1},{2,4},{3}}
               {{1,3},{2},{2}}
               {{1,3},{2},{3}}
               {{1,3},{2},{4}}
               {{1,4},{2},{3}}
		

Crossrefs

Unsortable set partitions are A058681.
Sortable normal multiset partitions are A326212.
Non-crossing normal multiset partitions are A324171.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],!OrderedQ[Join@@#]&]],{n,0,5}]

Formula

A255906(n) = a(n) + A326212(n).

A326256 MM-numbers of nesting multiset partitions.

Original entry on oeis.org

667, 989, 1334, 1633, 1769, 1817, 1978, 2001, 2021, 2323, 2461, 2623, 2668, 2967, 2987, 3197, 3266, 3335, 3538, 3634, 3713, 3749, 3956, 3979, 4002, 4042, 4171, 4331, 4379, 4429, 4439, 4577, 4646, 4669, 4747, 4819, 4859, 4899, 4922, 4945, 5029, 5246, 5267, 5307
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

First differs from A326255 in lacking 2599.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z and t < y or z < x and y < t. This is a stronger condition than capturing, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   667: {{2,2},{1,3}}
   989: {{2,2},{1,4}}
  1334: {{},{2,2},{1,3}}
  1633: {{2,2},{1,1,3}}
  1769: {{1,3},{1,2,2}}
  1817: {{2,2},{1,5}}
  1978: {{},{2,2},{1,4}}
  2001: {{1},{2,2},{1,3}}
  2021: {{1,4},{2,3}}
  2323: {{2,2},{1,6}}
  2461: {{2,2},{1,1,4}}
  2623: {{1,4},{1,2,2}}
  2668: {{},{},{2,2},{1,3}}
  2967: {{1},{2,2},{1,4}}
  2987: {{1,3},{2,2,2}}
  3197: {{2,2},{1,7}}
  3266: {{},{2,2},{1,1,3}}
  3335: {{2},{2,2},{1,3}}
  3538: {{},{1,3},{1,2,2}}
  3634: {{},{2,2},{1,5}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of capturing multiset partitions are A326255.
Nesting set partitions are A016098.
Capturing set partitions are A326243.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(xt)||(x>z&&yTable[PrimePi[p],{k}]]]];
    Select[Range[10000],nesXQ[primeMS/@primeMS[#]]&]

A324167 Number of non-crossing antichain covers of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 9, 67, 633, 6763, 77766, 938957, 11739033, 150649945, 1973059212, 26265513030, 354344889798, 4833929879517, 66568517557803, 924166526830701, 12920482325488761, 181750521972603049, 2570566932237176232, 36532394627404815308, 521439507533582646156
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(3) = 9 antichains:
  {{1,2,3}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Cf. A000108, A000124, A000372 (antichains), A001006, A006126 (antichain covers), A014466, A048143, A054726 (non-crossing graphs), A099947, A261005, A283877, A306438.
Cf. A324166, A324168, A324169, A324170, A324171, A324173, A359984 (no singletons).

Programs

  • Mathematica
    nn=6;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Inverse binomial transform of A324168.
Binomial transform of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023

A326258 MM-numbers of unsortable multiset partitions (with empty parts allowed).

Original entry on oeis.org

145, 169, 215, 290, 338, 355, 377, 395, 430, 435, 473, 481, 505, 507, 535, 559, 565, 580, 645, 667, 676, 695, 710, 725, 754, 790, 793, 803, 815, 841, 845, 860, 865, 869, 870, 905, 923, 946, 962, 965, 989, 995, 1010, 1014, 1015, 1027, 1065, 1070, 1073, 1075
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is unsortable if no permutation has an ordered concatenation. For example, the multiset partition ((1,2),(1,1,1),(2,2,2)) is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The sequence of terms together with their multiset multisystems begins:
  145: {{2},{1,3}}
  169: {{1,2},{1,2}}
  215: {{2},{1,4}}
  290: {{},{2},{1,3}}
  338: {{},{1,2},{1,2}}
  355: {{2},{1,1,3}}
  377: {{1,2},{1,3}}
  395: {{2},{1,5}}
  430: {{},{2},{1,4}}
  435: {{1},{2},{1,3}}
  473: {{3},{1,4}}
  481: {{1,2},{1,1,2}}
  505: {{2},{1,6}}
  507: {{1},{1,2},{1,2}}
  535: {{2},{1,1,4}}
  559: {{1,2},{1,4}}
  565: {{2},{1,2,3}}
  580: {{},{},{2},{1,3}}
  645: {{1},{2},{1,4}}
  667: {{2,2},{1,3}}
		

Crossrefs

Unsortable set partitions are A058681.
Normal unsortable multiset partitions are A326211.
Unsortable digraphs are A326209.
MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!OrderedQ[Join@@Sort[primeMS/@primeMS[#],lexsort]]&]

A324166 Number of totally crossing set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 57, 207, 842, 3673, 17062, 84897
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A set partition is totally crossing if every pair of distinct blocks is of the form {{...x...y...}, {...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			The a(6) = 18 totally crossing set partitions:
  {{1,2,3,4,5,6}}
  {{1,4,6},{2,3,5}}
  {{1,4,5},{2,3,6}}
  {{1,3,6},{2,4,5}}
  {{1,3,5},{2,4,6}}
  {{1,3,4},{2,5,6}}
  {{1,2,5},{3,4,6}}
  {{1,2,4},{3,5,6}}
  {{4,6},{1,2,3,5}}
  {{3,6},{1,2,4,5}}
  {{3,5},{1,2,4,6}}
  {{2,6},{1,3,4,5}}
  {{2,5},{1,3,4,6}}
  {{2,4},{1,3,5,6}}
  {{1,5},{2,3,4,6}}
  {{1,4},{2,3,5,6}}
  {{1,3},{2,4,5,6}}
  {{1,4},{2,5},{3,6}}
		

Crossrefs

Cf. A000108 (non-crossing partitions), A000110, A000296, A002662, A016098 (crossing partitions), A054726, A099947 (topologically connected partitions), A305854, A306006, A306418, A306438, A319752.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A324171 Number of non-crossing multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 1, 4, 16, 75, 378, 2042, 11489, 66697
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers.
A multiset partition is crossing if it has a 2-element submultiset of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The A255906(5) - a(5) = 22 crossing multiset partitions:
  {{13}{124}}  {{1}{13}{24}}
  {{13}{224}}  {{1}{24}{35}}
  {{13}{234}}  {{2}{13}{24}}
  {{13}{244}}  {{2}{14}{35}}
  {{13}{245}}  {{3}{13}{24}}
  {{14}{235}}  {{3}{14}{25}}
  {{24}{113}}  {{4}{13}{24}}
  {{24}{123}}  {{4}{13}{25}}
  {{24}{133}}  {{5}{13}{24}}
  {{24}{134}}
  {{24}{135}}
  {{25}{134}}
  {{35}{124}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A001006, A001055, A001263, A007297, A054726 (non-crossing graphs), A099947, A194560, A255906 (multiset partitions of normal multisets), A306438.

Programs

  • Mathematica
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[Select[mps[m],nonXQ]],{m,allnorm[n]}],{n,0,8}]

A326255 MM-numbers of capturing multiset partitions.

Original entry on oeis.org

667, 989, 1334, 1633, 1769, 1817, 1978, 2001, 2021, 2323, 2461, 2599, 2623, 2668, 2967, 2987, 3197, 3266, 3335, 3538, 3634, 3713, 3749, 3956, 3979, 4002, 4042, 4163, 4171, 4331, 4379, 4429, 4439, 4577, 4646, 4669, 4747, 4819, 4859, 4899, 4922, 4945, 5029, 5198
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

First differs from A326256 in having 2599.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and t < y or z < x and y < t. This is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   667: {{2,2},{1,3}}
   989: {{2,2},{1,4}}
  1334: {{},{2,2},{1,3}}
  1633: {{2,2},{1,1,3}}
  1769: {{1,3},{1,2,2}}
  1817: {{2,2},{1,5}}
  1978: {{},{2,2},{1,4}}
  2001: {{1},{2,2},{1,3}}
  2021: {{1,4},{2,3}}
  2323: {{2,2},{1,6}}
  2461: {{2,2},{1,1,4}}
  2599: {{2,2},{1,2,3}}
  2623: {{1,4},{1,2,2}}
  2668: {{},{},{2,2},{1,3}}
  2967: {{1},{2,2},{1,4}}
  2987: {{1,3},{2,2,2}}
  3197: {{2,2},{1,7}}
  3266: {{},{2,2},{1,1,3}}
  3335: {{2},{2,2},{1,3}}
  3538: {{},{1,3},{1,2,2}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of crossing capturing multiset partitions are A326259.
Capturing set partitions are A326243.

Programs

  • Mathematica
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xt||x>z&&yTable[PrimePi[p],{k}]]]];
    Select[Range[10000],capXQ[primeMS/@primeMS[#]]&]
Showing 1-10 of 29 results. Next