cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A326243 Number of capturing set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 1, 11, 80, 503, 2993, 17609, 105017, 644528, 4107600, 27313805, 189866541, 1379728831, 10470032837, 82833202559, 681977545967, 5832430910181, 51723181525978, 474866750479993, 4506706112772881, 44151975623559477, 445958774322599940, 4638590033810841345
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

A set partition is capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. This is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The a(5) = 11 capturing set partitions:
  {{1,2,5},{3,4}}
  {{1,3,4},{2,5}}
  {{1,3,5},{2,4}}
  {{1,4},{2,3,5}}
  {{1,4,5},{2,3}}
  {{1,5},{2,3,4}}
  {{1},{2,5},{3,4}}
  {{1,4},{2,3},{5}}
  {{1,5},{2},{3,4}}
  {{1,5},{2,3},{4}}
  {{1,5},{2,4},{3}}
		

Crossrefs

Non-capturing set partitions are A054391.
Crossing and nesting set partitions are (both) A016098.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xt||x>z&&y
    				

Formula

a(n) = A000110(n) - A054391(n).

Extensions

a(12) and beyond from Christian Sievers, Aug 23 2024

A326211 Number of unsortable normal multiset partitions of weight n.

Original entry on oeis.org

0, 0, 0, 1, 17, 170, 1455, 11678, 92871, 752473
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers. It is unsortable if no permutation has an ordered concatenation, or equivalently if the concatenation of its lexicographically-ordered parts is not weakly increasing. For example, the multiset partition {{1,2},{1,1,1},{2,2,2}} is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The a(3) = 1 and a(4) = 17 multiset partitions:
  {{1,3},{2}}  {{1,1,3},{2}}
               {{1,2},{1,2}}
               {{1,2},{1,3}}
               {{1,2,3},{2}}
               {{1,2,4},{3}}
               {{1,3},{2,2}}
               {{1,3},{2,3}}
               {{1,3},{2,4}}
               {{1,3,3},{2}}
               {{1,3,4},{2}}
               {{1,4},{2,3}}
               {{1},{1,3},{2}}
               {{1},{2,4},{3}}
               {{1,3},{2},{2}}
               {{1,3},{2},{3}}
               {{1,3},{2},{4}}
               {{1,4},{2},{3}}
		

Crossrefs

Unsortable set partitions are A058681.
Sortable normal multiset partitions are A326212.
Non-crossing normal multiset partitions are A324171.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],!OrderedQ[Join@@#]&]],{n,0,5}]

Formula

A255906(n) = a(n) + A326212(n).

A326244 Number of labeled n-vertex simple graphs without crossing or nesting edges.

Original entry on oeis.org

1, 1, 2, 8, 36, 160, 704, 3088, 13536, 59328, 260032, 1139712
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Crossrefs

The case for set partitions is A001519.
Simple graphs with crossing or nesting edges are A326279.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

A006125(n) = a(n) + A326279(n).
Conjectures from Colin Barker, Jun 28 2019: (Start)
G.f.: (1 - x)*(1 - 4*x) / (1 - 6*x + 8*x^2 - 4*x^3).
a(n) = 6*a(n-1) - 8*a(n-2) + 4*a(n-3) for n>2.
(End)

A326256 MM-numbers of nesting multiset partitions.

Original entry on oeis.org

667, 989, 1334, 1633, 1769, 1817, 1978, 2001, 2021, 2323, 2461, 2623, 2668, 2967, 2987, 3197, 3266, 3335, 3538, 3634, 3713, 3749, 3956, 3979, 4002, 4042, 4171, 4331, 4379, 4429, 4439, 4577, 4646, 4669, 4747, 4819, 4859, 4899, 4922, 4945, 5029, 5246, 5267, 5307
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

First differs from A326255 in lacking 2599.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z and t < y or z < x and y < t. This is a stronger condition than capturing, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   667: {{2,2},{1,3}}
   989: {{2,2},{1,4}}
  1334: {{},{2,2},{1,3}}
  1633: {{2,2},{1,1,3}}
  1769: {{1,3},{1,2,2}}
  1817: {{2,2},{1,5}}
  1978: {{},{2,2},{1,4}}
  2001: {{1},{2,2},{1,3}}
  2021: {{1,4},{2,3}}
  2323: {{2,2},{1,6}}
  2461: {{2,2},{1,1,4}}
  2623: {{1,4},{1,2,2}}
  2668: {{},{},{2,2},{1,3}}
  2967: {{1},{2,2},{1,4}}
  2987: {{1,3},{2,2,2}}
  3197: {{2,2},{1,7}}
  3266: {{},{2,2},{1,1,3}}
  3335: {{2},{2,2},{1,3}}
  3538: {{},{1,3},{1,2,2}}
  3634: {{},{2,2},{1,5}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of capturing multiset partitions are A326255.
Nesting set partitions are A016098.
Capturing set partitions are A326243.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(xt)||(x>z&&yTable[PrimePi[p],{k}]]]];
    Select[Range[10000],nesXQ[primeMS/@primeMS[#]]&]

A054391 Number of permutations with certain forbidden subsequences.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 123, 374, 1147, 3538, 10958, 34042, 105997, 330632, 1032781, 3229714, 10109310, 31667245, 99260192, 311294876, 976709394, 3065676758, 9625674442, 30231524869, 94972205349, 298419158008, 937861780439, 2947969125284, 9267666915326
Offset: 0

Views

Author

N. J. A. Sloane, Elisa Pergola (elisa(AT)dsi.unifi.it), May 21 2000

Keywords

Comments

Hankel transform is [1,1,1,...] = A000012. - Paul Barry, Jan 19 2009
The inverse Motzkin transform apparently yields 1 followed by A000930, which implies a generating function g(x)=1+z/(1-z-z^3) where z=x*A001006(x). - R. J. Mathar, Jul 07 2009
It appears that the infinite set of interpolated sequences between the Motzkin and the Catalan can be generated with a succession of INVERT transforms, given each sequence has two leading 1's. Also, the N-th sequence in the set starting with (N=1, A001006) can be generated from a production matrix of the form "M" in the formula section, such that the main diagonal is (N leading 1's, 0, 0, 0, ...). M with a diagonal of (1, 0, 0, 0, ...) generates A001006, while M with a main diagonal of all 1's is the production matrix for A000108. - Gary W. Adamson, Jul 29 2011
From Gus Wiseman, Jun 22 2019: (Start)
Conjecture: Also the number of non-capturing set partitions of {1..n}. A set partition is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. This is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting. The a(0) = 1 through a(4) = 14 non-capturing set partitions are:
{} {{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{2}} {{1},{2,3}} {{1},{2,3,4}}
{{1,2},{3}} {{1,2},{3,4}}
{{1,3},{2}} {{1,2,3},{4}}
{{1},{2},{3}} {{1,2,4},{3}}
{{1,3},{2,4}}
{{1,3,4},{2}}
{{1},{2},{3,4}}
{{1},{2,3},{4}}
{{1,2},{3},{4}}
{{1},{2,4},{3}}
{{1,3},{2},{4}}
{{1,4},{2},{3}}
{{1},{2},{3},{4}}
(End)
The above conjecture is true: A partition is non-capturing iff its representation in canonical sequential form avoids the patterns 1221 and 2112. In the context of these partition representations, the pattern 2112 is equivalent to the pattern 12112. Partitions whose canonical sequence form avoid 1221 and 12112 are one of the classes that are handled in the Mansour/Shattuck "Pattern Avoiding Partitions,..." paper. It shows that they are counted by this sequence. - Christian Sievers, Oct 29 2024

Examples

			a(4) = 14, a(5) = 41 since the top row of M^4 = (14, 14, 9, 3, 1), with 41 = (14 + 14 + 9 + 3 + 1).
		

Crossrefs

Interpolates between Motzkin numbers (A001006) and Catalan numbers (A000108). Cf. A005773, A054392, ...
Binomial transform of A224747.

Programs

  • Maple
    c := x->(1-sqrt(1-4*x))/(2*x); a := (x,j)->(x)/((1-4*x)*(c(x))^2*(1-c(x))^(j))*(-x^2*(c(x))^2*(1-c(x))*(x^2*(c(x))^4)^(j)-(1-3*x-2*x^2)*(c(x))^2*(x*(c(x))^2)^(j)+x);
    b := (x,j)->1+(1)/((1-4*x)*c(x)*(1-c(x))^(j))*(-2*x^3*(c(x))^2*(x^2*(c(x))^4)^(j)+(1-3*x-2*x^2)*c(x)*(x*(c(x))^2)^(j)-2*x^2);
    co := (x,j)->(1)/((1-4*x)*(1-c(x))^(j))*(x^2*(x^2*(c(x))^4)^(j)-(1-3*x-2*x^2)*(x*(c(x))^2)^(j)+x^2);
    s := (x,j)->(1-b(x,j)+(-1)^j*sqrt((1-b(x,j))^2-4*a(x,j)*co(x,j)))/(2*a(x,j)); j := 3; series(s(x,j),x=0..60); od; # j=1,2,3,... inf gives A001006, A005773, A054391, A054392, ..., A000108
  • Mathematica
    CoefficientList[Series[1 - 2*x^2/(2*x^2 - 3*x + 1 - Sqrt[1 - 2*x - 3*x^2]), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
  • Maxima
    a(n):=sum((sum((binomial(k,l)*l*sum(binomial(j,1-n-2*l+k+2*j)*binomial(n-1+l-k,j),j,0,n+l-k-1))/(n+l-k-1),l,1,k)),k,1,n-1)+1; /* Vladimir Kruchinin, Oct 31 2011 */
    
  • PARI
    x='x+O('x^66); gf=1-2*x^2/(2*x^2-3*x+1-sqrt(1-2*x-3*x^2)); Vec(gf) \\ Joerg Arndt, Jun 29 2013

Formula

G.f.: 1 - 2*x^2 / (2*x^2 - 3*x + 1 - sqrt(1 - 2*x - 3*x^2)). - Mansour and Shattuck
G.f.: 1/(1-x-x^2/(1-2x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-... (continued fraction) (conjecture). - Paul Barry, Jan 19 2009
From Gary W. Adamson, Jul 29 2011: (Start)
a(n) = upper left term of M^n, a(n+1) = sum of top row terms of M^n; M = an infinite square production matrix as follows with a main diagonal of (1, 1, 1, 0, 0, 0, ...):
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 0, 1, 0, ...
1, 1, 1, 1, 0, 1, ...
1, 1, 1, 1, 1, 0, ...
... (End)
a(n) = Sum_{k=1..n-1} (sum(l=1..k, (binomial(k,l)*l*sum(j=0..n+l-k-1, binomial(j,1-n-2*l+k+2*j)*binomial(n-1+l-k,j)))/(n+l-k-1))) + 1. - Vladimir Kruchinin, Oct 31 2011
D-finite with recurrence (-n+1)*a(n) + 3*(2*n-3)*a(n-1) + (-8*n+11)*a(n-2) + (-5*n+32)*a(n-3) + (7*n-31)*a(n-4) + 3*(-n+4)*a(n-5)= 0. - R. J. Mathar, Nov 26 2012
G.f.: 1 - x*(2*x^2-3*x+1 + 1/G(0))/(2*(x^3-3*x^2+4*x-1)), where G(k)= 1 + x*(2+3*x)*(4*k+1)/( 4*k+2 - x*(2+3*x)*(4*k+2)*(4*k+3)/(x*(2+3*x)*(4*k+3) + 4*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013

A326258 MM-numbers of unsortable multiset partitions (with empty parts allowed).

Original entry on oeis.org

145, 169, 215, 290, 338, 355, 377, 395, 430, 435, 473, 481, 505, 507, 535, 559, 565, 580, 645, 667, 676, 695, 710, 725, 754, 790, 793, 803, 815, 841, 845, 860, 865, 869, 870, 905, 923, 946, 962, 965, 989, 995, 1010, 1014, 1015, 1027, 1065, 1070, 1073, 1075
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is unsortable if no permutation has an ordered concatenation. For example, the multiset partition ((1,2),(1,1,1),(2,2,2)) is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The sequence of terms together with their multiset multisystems begins:
  145: {{2},{1,3}}
  169: {{1,2},{1,2}}
  215: {{2},{1,4}}
  290: {{},{2},{1,3}}
  338: {{},{1,2},{1,2}}
  355: {{2},{1,1,3}}
  377: {{1,2},{1,3}}
  395: {{2},{1,5}}
  430: {{},{2},{1,4}}
  435: {{1},{2},{1,3}}
  473: {{3},{1,4}}
  481: {{1,2},{1,1,2}}
  505: {{2},{1,6}}
  507: {{1},{1,2},{1,2}}
  535: {{2},{1,1,4}}
  559: {{1,2},{1,4}}
  565: {{2},{1,2,3}}
  580: {{},{},{2},{1,3}}
  645: {{1},{2},{1,4}}
  667: {{2,2},{1,3}}
		

Crossrefs

Unsortable set partitions are A058681.
Normal unsortable multiset partitions are A326211.
Unsortable digraphs are A326209.
MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!OrderedQ[Join@@Sort[primeMS/@primeMS[#],lexsort]]&]

A326212 Number of sortable normal multiset partitions of weight n.

Original entry on oeis.org

1, 1, 4, 15, 59, 230, 901, 3522, 13773, 53847, 210527, 823087, 3218002, 12581319, 49188823, 192312112, 751877137, 2939592383, 11492839729, 44933224559, 175674134309, 686828104551, 2685272063984, 10498530869151, 41045803846015, 160475597429847
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers. It is sortable if some permutation has an ordered concatenation. For example, the multiset partition {{1,2},{1,1,1},{2,2,2}} is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The a(0) = 1 through a(3) = 15 multiset partitions:
  {}  {{1}}  {{1,1}}    {{1,1,1}}
             {{1,2}}    {{1,1,2}}
             {{1},{1}}  {{1,2,2}}
             {{1},{2}}  {{1,2,3}}
                        {{1},{1,1}}
                        {{1},{1,2}}
                        {{1,1},{2}}
                        {{1},{2,2}}
                        {{1,2},{2}}
                        {{1},{2,3}}
                        {{1,2},{3}}
                        {{1},{1},{1}}
                        {{1},{1},{2}}
                        {{1},{2},{2}}
                        {{1},{2},{3}}
		

Crossrefs

Sortable set partitions are A011782.
Unsortable normal multiset partitions are A326211.
Crossing normal multiset partitions are A326277.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],OrderedQ[Join@@#]&]],{n,0,5}]
  • PARI
    seq(n) = my(p=1/eta(x + O(x*x^n))); Vec(((1 - x)*(1 - 2*x) - x^2*p)/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*p)) \\ Andrew Howroyd, May 11 2023

Formula

A255906(n) = a(n) + A326211(n).
G.f.: ((1 - x)*(1 - 2*x) - x^2*P(x))/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*P(x)) where P(x) is the g.f. of A000041. - Andrew Howroyd, May 11 2023

Extensions

Terms a(10) and beyond from Andrew Howroyd, May 11 2023

A326257 MM-numbers of weakly nesting multiset partitions.

Original entry on oeis.org

49, 91, 98, 133, 147, 169, 182, 196, 203, 245, 247, 259, 266, 273, 294, 299, 301, 338, 343, 361, 364, 371, 377, 392, 399, 406, 427, 441, 455, 481, 490, 494, 497, 507, 518, 529, 532, 539, 546, 551, 553, 559, 588, 598, 602, 609, 623, 637, 665, 667, 676, 686, 689
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is weakly nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x <= z and t <= y or z <= x and y <= t.

Examples

			The sequence of terms together with their multiset multisystems begins:
   49: {{1,1},{1,1}}
   91: {{1,1},{1,2}}
   98: {{},{1,1},{1,1}}
  133: {{1,1},{1,1,1}}
  147: {{1},{1,1},{1,1}}
  169: {{1,2},{1,2}}
  182: {{},{1,1},{1,2}}
  196: {{},{},{1,1},{1,1}}
  203: {{1,1},{1,3}}
  245: {{2},{1,1},{1,1}}
  247: {{1,2},{1,1,1}}
  259: {{1,1},{1,1,2}}
  266: {{},{1,1},{1,1,1}}
  273: {{1},{1,1},{1,2}}
  294: {{},{1},{1,1},{1,1}}
  299: {{1,2},{2,2}}
  301: {{1,1},{1,4}}
  338: {{},{1,2},{1,2}}
  343: {{1,1},{1,1},{1,1}}
  361: {{1,1,1},{1,1,1}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A324256.
MM-numbers of capturing multiset partitions are A326255.
Nesting set partitions are A016098.

Programs

  • Mathematica
    wknXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)]
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],wknXQ[primeMS/@primeMS[#]]&]

A122880 Catalan numbers minus odd-indexed Fibonacci numbers.

Original entry on oeis.org

0, 0, 0, 1, 8, 43, 196, 820, 3265, 12615, 47840, 179355, 667875, 2478022, 9180616, 34011401, 126120212, 468411235, 1743105373, 6500874434, 24300686879, 91049069203, 341924710480, 1286932932251, 4854167659403, 18346988061078
Offset: 1

Views

Author

Gary W. Adamson, Sep 16 2006

Keywords

Comments

From Emeric Deutsch, Aug 21 2008: (Start)
Number of Dyck paths of height at least 4 and of semilength n. Example: a(5)=8 because we have UUUUUDDDDD, UUUUDUDDDD, UUUDUUDDDD, UUDUUUDDDD, UDUUUUDDDD and the reflection of the last three in a vertical axis.
Number of ordered trees of height at least 4 and having n edges. (End)
From Gus Wiseman, Jun 22 2019: (Start)
Also the number of non-crossing, capturing set partitions of {1..n}. A set partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y, and capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting. The a(4) = 1 and a(5) = 8 non-crossing, capturing set partitions are:
{{1,4},{2,3}} {{1,2,5},{3,4}}
{{1,4,5},{2,3}}
{{1,5},{2,3,4}}
{{1},{2,5},{3,4}}
{{1,4},{2,3},{5}}
{{1,5},{2},{3,4}}
{{1,5},{2,3},{4}}
{{1,5},{2,4},{3}}
(End)

Examples

			a(5) = 8 = A000108(5) - A001519(5) = 42 - 34.
		

Crossrefs

Non-crossing set partitions are A000108.
Capturing set partitions are A326243.
Crossing, not capturing set partitions are A326245.
Crossing, capturing set partitions are A326246.

Programs

  • Maple
    with(combinat): seq(binomial(2*n,n)/(n+1)-fibonacci(2*n-1), n=1..27); # Emeric Deutsch, Aug 21 2008
  • Mathematica
    With[{nn=30},#[[1]]-#[[2]]&/@Thread[{CatalanNumber[Range[nn]], Fibonacci[ Range[ 1,2nn,2]]}]] (* Harvey P. Dale, Nov 07 2016 *)

Formula

A000108(n) - A001519(n), n > 0; A000108 = Catalan numbers, A001519 = odd-indexed Fibonacci numbers.

Extensions

More terms from Emeric Deutsch, Aug 21 2008

A326246 Number of crossing, capturing set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 37, 307, 2173, 14344, 92402, 596688
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

A set partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y, and capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The a(5) = 3 set partitions:
  {{1,3,4},{2,5}}
  {{1,3,5},{2,4}}
  {{1,4},{2,3,5}}
		

Crossrefs

MM-numbers of crossing, capturing multiset partitions are A326259.
Crossing set partitions are A016098.
Capturing set partitions are A326243.
Crossing, nesting set partitions are A326248.
Crossing, non-capturing set partitions are A326245.
Non-crossing, capturing set partitions are A122880 (conjecture).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
Showing 1-10 of 14 results. Next