cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A082582 Expansion of (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4)) / (2*x) in powers of x.

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 35, 97, 275, 794, 2327, 6905, 20705, 62642, 190987, 586219, 1810011, 5617914, 17518463, 54857506, 172431935, 543861219, 1720737981, 5459867166, 17369553427, 55391735455, 177040109419, 567019562429, 1819536774089
Offset: 0

Views

Author

Emanuele Munarini, May 07 2003

Keywords

Comments

a(n) is the number of Dyck paths of semilength n with no UUDD. See A025242 for a bijection between paths avoiding DDUU versus UUDD.
Also number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k>=1. - Alois P. Heinz, Oct 07 2015
a(n) is the number of bargraphs of semiperimeter n (n>=2). Example: a(4) = 5; the 5 bargraphs correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3]. - Emeric Deutsch, May 20 2016 [a(n) are the row sums of A271942 for n >= 2. Peter Luschny, Oct 18 2020]
a(n) is the number of skew Motzkin paths of length n. A skew Motzkin path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down), F=(1,0) (flat) and A=(-1,1) (anti-down) so that down and anti-down steps do not overlap. - Sergey Kirgizov, Oct 03 2018
From Gus Wiseman, Jul 04 2019: (Start)
Conjecture: Also the number of maximal simple graphs with vertices {1..n} and no weakly nesting edges. Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d. For example, the a(1) = 1 through a(5) = 13 edge-sets are:
{} {12} {13} {14} {15}
{12,23} {12,24} {12,25}
{13,24} {13,25}
{13,34} {14,25}
{12,23,34} {14,35}
{14,45}
{12,23,35}
{12,24,35}
{12,24,45}
{13,24,35}
{13,24,45}
{13,34,45}
{12,23,34,45}
(End)
a(n) is the number of Dyck n-paths in which no nonterminal descent has the same length as the preceding ascent. Example: a(3) = 2 counts UUDUDD and UUUDDD where the latter path qualifies because DDD is the terminal descent. - David Callan, Dec 14 2021

Examples

			1 + x + x^2 + 2*x^3 + 5*x^4 + 13*x^5 + 35*x^6 + 97*x^7 + 275*x^8 + ...
a(3)=2 because the only Dyck paths of semilength 3 with no UUDD in them are UDUDUD and UUDUDD (the nonqualifying ones being UDUUDD, UUDDUD and UUUDDD). - _Emeric Deutsch_, Jan 27 2003
		

Crossrefs

Apart from initial term, same as A025242.
See A086581 for Dyck paths avoiding DDUU.
Cf. A000108, A218321, A263316, A271942 (refinement).
Column k=0 of A098978.

Programs

  • Haskell
    a082582 n = a082582_list !! n
    a082582_list = 1 : 1 : f [1,1] where
       f xs'@(x:_:xs) = y : f (y : xs') where
         y = x + sum (zipWith (*) xs' $ reverse xs)
    -- Reinhard Zumkeller, Nov 13 2012
    
  • Maple
    f:= gfun:-rectoproc({(n-1)*a(n)+(2*n+4)*a(n+2)+(-14-4*n)*a(n+3)+(5+n)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2},a(n),remember):
    map(f,[$0..100]); # Robert Israel, May 20 2016
  • Mathematica
    a[0]=1;a[n_Integer]:=a[n]=a[n-1]+Sum[a[k]*a[n-1-k],{k,2,n-1}];Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
    a[ n_] := SeriesCoefficient[ 2 / (1 + x^2 + Sqrt[1 - 4 x + 2 x^2 + x^4]), {x, 0, n}] (* Michael Somos, Jul 01 2011 *)
    a[n_] := Sum[HypergeometricPFQ[{-k, 3 + k, k - n}, {1, 2}, 1], {k, 0, n}];
    Join[{1, 1}, Table[a[n], {n, 0, 26}]] (* Peter Luschny, Oct 18 2020 *)
  • Maxima
    a(n):=sum(sum((binomial(n-k-2,j)*binomial(k,j)*binomial(k+j+2,j))/(j+1),j,0,n-k-1),k,0,n-2); /* Vladimir Kruchinin, Oct 18 2020 */
  • PARI
    {a(n) = polcoeff( (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4 + x^2 * O(x^n))) / 2, n+1)} /* Michael Somos, Jul 22 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 /(1 + x^2 + sqrt( 1 - 4*x + 2*x^2 + x^4 + x * O(x^n))),n))} /* Michael Somos, Jul 01 2011 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = O(x); for( k = 0, n, A = 1 / (1 + x^2 - x * A)); polcoeff( A, n))} /* Michael Somos, Mar 28 2011 */
    

Formula

G.f.: (1 + x^2 - sqrt( 1 - 4*x + 2*x^2 + x^4)) / (2*x) = 2 /(1 + x^2 + sqrt( 1 - 4*x + 2*x^2 + x^4)).
G.f. A(x) satisfies the equation 0 = 1 - (1 + x^2) * A(x) + x * A(x)^2. - Michael Somos, Jul 22 2003
G.f. A(x) satisfies A(x) = 1 / (1 + x^2 - x * A(x)). - Michael Somos, Mar 28 2011
G.f. A(x) = 1 / (1 + x^2 - x / (1 + x^2 - x / (1 + x^2 - ... ))) continued fraction. - Michael Somos, Jul 01 2011
Series reversion of x * A(x) is x * A007477(-x). - Michael Somos, Jul 22 2003
a(n+1) = a(n) + Sum(a(k)*a(n-k): k=2..n), a(0) = a(1) = 1. - Reinhard Zumkeller, Nov 13 2012
G.f.: 1 + x - x*G(0), where G(k)= 1 - 1/(1 - x/(1 - x/(1 - x/(1 - x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jul 12 2013
D-finite with recurrence: (n-1)*a(n)+(2*n+4)*a(n+2)+(-14-4*n)*a(n+3)+(5+n)*a(n+4) = 0. - Robert Israel, May 20 2016
a(n) = Sum_{k=0..n-2} Sum_{j=0..n-k-1} C(n-k-2,j)*C(k,j)*C(k+j+2,j)/(j+1), n>1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Oct 18 2020
a(n) = Sum_{k=0..n-2} HypergeometricPFQ[{-k, 3 +k, k - n + 2}, {1, 2}, 1] for n >= 2. - Peter Luschny, Oct 18 2020
a(n) ~ sqrt(2+r) / (2 * sqrt(Pi) * n^(3/2) * r^n), where r = 0.295597742522084... is the real root of the equation r^3 + r^2 + 3*r - 1 = 0. - Vaclav Kotesovec, Jun 05 2022
G.f.: 1/G(x), with G(x) = 1 - (x-x^2)/(1-x/G(x)) (continued fraction). - Nikolaos Pantelidis, Jan 11 2023

A054726 Number of graphs with n nodes on a circle without crossing edges.

Original entry on oeis.org

1, 1, 2, 8, 48, 352, 2880, 25216, 231168, 2190848, 21292032, 211044352, 2125246464, 21681954816, 223623069696, 2327818174464, 24424842461184, 258054752698368, 2742964283768832, 29312424612462592, 314739971287154688, 3393951437605044224, 36739207546043105280
Offset: 0

Views

Author

Philippe Flajolet, Apr 20 2000

Keywords

Comments

Related to Schröder's second problem.
A001006 gives number of ways of drawing any number of nonintersecting chords between n points on a circle, while this sequence gives number of ways of drawing noncrossing chords between n points on a circle. The difference is that nonintersection chords have no point in common, while noncrossing chords may share an endpoint. - David W. Wilson, Jan 30 2003
For n>0, a(n) = number of lattice paths from (0,0) to (n-1,n-1) that consist of steps (i,j), i,j nonnegative integers not both 0 and that stay strictly below the line y=x except at their endpoints. For example, a(3)=8 counts the paths with following step sequences: {(2, 2)}, {(2, 1), (0, 1)}, {(2, 0), (0, 2)}, {(2, 0), (0, 1), (0, 1)}, {(1, 0), (1, 2)}, {(1, 0), (1, 1), (0, 1)}, {(1, 0), (1, 0), (0, 2)}, {(1, 0), (1, 0), (0, 1), (0, 1)}. If the word "strictly" is replaced by "weakly", the counting sequence becomes A059435. - David Callan, Jun 07 2006
The nodes on the circle are distinguished by their positions but are otherwise unlabeled. - Lee A. Newberg, Aug 09 2011
From Gus Wiseman, Jun 22 2019: (Start)
Conjecture: Also the number of simple graphs with vertices {1..n} not containing any pair of nesting edges. Two edges {a,b}, {c,d} where a < b and c < d are nesting if a < c and b > d or a > c and b < d. For example, the a(0) = 1 through a(3) = 8 non-nesting edge-sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
(End)

Crossrefs

Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Cf. A000108 (non-crossing set partitions), A000124, A006125, A007297 (connected case), A194560, A306438, A324167, A324169 (covering case), A324173, A326210.

Programs

  • Maple
    with(combstruct): br:= {EA = Union(Sequence(EA, card >= 2), Prod(V, Sequence(EA), Sequence(EA))), V=Union(Prod(Z, G)), G=Union(Epsilon, Prod(Z, G), Prod(V,V,Sequence(EA), Sequence(EA), Sequence(Union(Sequence(EA,card>=1), Prod(V,Sequence(EA),Sequence(EA)))))) }; ggSeq := [seq(count([G, br], size=i), i=0..20)];
  • Mathematica
    Join[{a = 1, b = 1}, Table[c = (6*(2*n - 3)*b)/n - (4*(n - 3) a)/n; a = b; b = c, {n, 1, 40}]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
    nn=8;
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xGus Wiseman, Feb 19 2019 *)
  • PARI
    z='z+O('z^66); Vec( 1+3/2*z-z^2-z/2*sqrt(1-12*z+4*z^2) ) \\ Joerg Arndt, Mar 01 2014

Formula

a(n) = 2^n*A001003(n-2) for n>2.
From Lee A. Newberg, Aug 09 2011: (Start)
G.f.: 1 + (3/2)*z - z^2 - (z/2)*sqrt(1 - 12*z + 4*z^2);
D-finite with recurrence: a(n) = ((12*n-30)*a(n-1) - (4*n-16)*a(n-2)) / (n-1) for n>1. (End)
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 11 2012, simplified Dec 24 2017
a(n) = 2^(n-2) * (Legendre_P(n-1, 3) - Legendre_P(n-3, 3))/(2*n - 3) = 2^n * (Legendre_P(n-1, 3) - 3*Legendre_P(n-2, 3))/(4*n - 8), both for n >= 3. - Peter Bala, May 06 2024

Extensions

Offset changed to 0 by Lee A. Newberg, Aug 03 2011

A326256 MM-numbers of nesting multiset partitions.

Original entry on oeis.org

667, 989, 1334, 1633, 1769, 1817, 1978, 2001, 2021, 2323, 2461, 2623, 2668, 2967, 2987, 3197, 3266, 3335, 3538, 3634, 3713, 3749, 3956, 3979, 4002, 4042, 4171, 4331, 4379, 4429, 4439, 4577, 4646, 4669, 4747, 4819, 4859, 4899, 4922, 4945, 5029, 5246, 5267, 5307
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

First differs from A326255 in lacking 2599.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z and t < y or z < x and y < t. This is a stronger condition than capturing, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   667: {{2,2},{1,3}}
   989: {{2,2},{1,4}}
  1334: {{},{2,2},{1,3}}
  1633: {{2,2},{1,1,3}}
  1769: {{1,3},{1,2,2}}
  1817: {{2,2},{1,5}}
  1978: {{},{2,2},{1,4}}
  2001: {{1},{2,2},{1,3}}
  2021: {{1,4},{2,3}}
  2323: {{2,2},{1,6}}
  2461: {{2,2},{1,1,4}}
  2623: {{1,4},{1,2,2}}
  2668: {{},{},{2,2},{1,3}}
  2967: {{1},{2,2},{1,4}}
  2987: {{1,3},{2,2,2}}
  3197: {{2,2},{1,7}}
  3266: {{},{2,2},{1,1,3}}
  3335: {{2},{2,2},{1,3}}
  3538: {{},{1,3},{1,2,2}}
  3634: {{},{2,2},{1,5}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of capturing multiset partitions are A326255.
Nesting set partitions are A016098.
Capturing set partitions are A326243.

Programs

  • Mathematica
    nesXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(xt)||(x>z&&yTable[PrimePi[p],{k}]]]];
    Select[Range[10000],nesXQ[primeMS/@primeMS[#]]&]

A326258 MM-numbers of unsortable multiset partitions (with empty parts allowed).

Original entry on oeis.org

145, 169, 215, 290, 338, 355, 377, 395, 430, 435, 473, 481, 505, 507, 535, 559, 565, 580, 645, 667, 676, 695, 710, 725, 754, 790, 793, 803, 815, 841, 845, 860, 865, 869, 870, 905, 923, 946, 962, 965, 989, 995, 1010, 1014, 1015, 1027, 1065, 1070, 1073, 1075
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is unsortable if no permutation has an ordered concatenation. For example, the multiset partition ((1,2),(1,1,1),(2,2,2)) is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The sequence of terms together with their multiset multisystems begins:
  145: {{2},{1,3}}
  169: {{1,2},{1,2}}
  215: {{2},{1,4}}
  290: {{},{2},{1,3}}
  338: {{},{1,2},{1,2}}
  355: {{2},{1,1,3}}
  377: {{1,2},{1,3}}
  395: {{2},{1,5}}
  430: {{},{2},{1,4}}
  435: {{1},{2},{1,3}}
  473: {{3},{1,4}}
  481: {{1,2},{1,1,2}}
  505: {{2},{1,6}}
  507: {{1},{1,2},{1,2}}
  535: {{2},{1,1,4}}
  559: {{1,2},{1,4}}
  565: {{2},{1,2,3}}
  580: {{},{},{2},{1,3}}
  645: {{1},{2},{1,4}}
  667: {{2,2},{1,3}}
		

Crossrefs

Unsortable set partitions are A058681.
Normal unsortable multiset partitions are A326211.
Unsortable digraphs are A326209.
MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!OrderedQ[Join@@Sort[primeMS/@primeMS[#],lexsort]]&]

A326255 MM-numbers of capturing multiset partitions.

Original entry on oeis.org

667, 989, 1334, 1633, 1769, 1817, 1978, 2001, 2021, 2323, 2461, 2599, 2623, 2668, 2967, 2987, 3197, 3266, 3335, 3538, 3634, 3713, 3749, 3956, 3979, 4002, 4042, 4163, 4171, 4331, 4379, 4429, 4439, 4577, 4646, 4669, 4747, 4819, 4859, 4899, 4922, 4945, 5029, 5198
Offset: 1

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

First differs from A326256 in having 2599.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and t < y or z < x and y < t. This is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   667: {{2,2},{1,3}}
   989: {{2,2},{1,4}}
  1334: {{},{2,2},{1,3}}
  1633: {{2,2},{1,1,3}}
  1769: {{1,3},{1,2,2}}
  1817: {{2,2},{1,5}}
  1978: {{},{2,2},{1,4}}
  2001: {{1},{2,2},{1,3}}
  2021: {{1,4},{2,3}}
  2323: {{2,2},{1,6}}
  2461: {{2,2},{1,1,4}}
  2599: {{2,2},{1,2,3}}
  2623: {{1,4},{1,2,2}}
  2668: {{},{},{2,2},{1,3}}
  2967: {{1},{2,2},{1,4}}
  2987: {{1,3},{2,2,2}}
  3197: {{2,2},{1,7}}
  3266: {{},{2,2},{1,1,3}}
  3335: {{2},{2,2},{1,3}}
  3538: {{},{1,3},{1,2,2}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of crossing capturing multiset partitions are A326259.
Capturing set partitions are A326243.

Programs

  • Mathematica
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xt||x>z&&yTable[PrimePi[p],{k}]]]];
    Select[Range[10000],capXQ[primeMS/@primeMS[#]]&]

A326212 Number of sortable normal multiset partitions of weight n.

Original entry on oeis.org

1, 1, 4, 15, 59, 230, 901, 3522, 13773, 53847, 210527, 823087, 3218002, 12581319, 49188823, 192312112, 751877137, 2939592383, 11492839729, 44933224559, 175674134309, 686828104551, 2685272063984, 10498530869151, 41045803846015, 160475597429847
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers. It is sortable if some permutation has an ordered concatenation. For example, the multiset partition {{1,2},{1,1,1},{2,2,2}} is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The a(0) = 1 through a(3) = 15 multiset partitions:
  {}  {{1}}  {{1,1}}    {{1,1,1}}
             {{1,2}}    {{1,1,2}}
             {{1},{1}}  {{1,2,2}}
             {{1},{2}}  {{1,2,3}}
                        {{1},{1,1}}
                        {{1},{1,2}}
                        {{1,1},{2}}
                        {{1},{2,2}}
                        {{1,2},{2}}
                        {{1},{2,3}}
                        {{1,2},{3}}
                        {{1},{1},{1}}
                        {{1},{1},{2}}
                        {{1},{2},{2}}
                        {{1},{2},{3}}
		

Crossrefs

Sortable set partitions are A011782.
Unsortable normal multiset partitions are A326211.
Crossing normal multiset partitions are A326277.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],OrderedQ[Join@@#]&]],{n,0,5}]
  • PARI
    seq(n) = my(p=1/eta(x + O(x*x^n))); Vec(((1 - x)*(1 - 2*x) - x^2*p)/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*p)) \\ Andrew Howroyd, May 11 2023

Formula

A255906(n) = a(n) + A326211(n).
G.f.: ((1 - x)*(1 - 2*x) - x^2*P(x))/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*P(x)) where P(x) is the g.f. of A000041. - Andrew Howroyd, May 11 2023

Extensions

Terms a(10) and beyond from Andrew Howroyd, May 11 2023

A326237 Number of non-nesting digraphs with vertices {1..n}, where two edges (a,b), (c,d) are nesting if a < c and b > d or a > c and b < d.

Original entry on oeis.org

1, 2, 12, 104, 1008, 10272, 107712, 1150592
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

These are digraphs with the property that, if the edges are listed in lexicographic order, the sequence of targets is weakly increasing. For example, the digraph with lexicographically ordered edge set {(1,2),(2,1),(3,1),(3,2)} is nesting because the targets are (2,1,1,2), a sequence that is not weakly increasing.
Also the number of non-semicrossing digraphs with vertices {1..n}, where two edges (a,b), (c,d) are semicrossing if a < c and b < d or a > c and b > d. For example, the a(2) = 4 non-semicrossing digraph edge-sets are:
{}
{11}
{12}
{21}
{22}
{11,12}
{11,21}
{12,21}
{12,22}
{21,22}
{11,12,21}
{12,21,22}
Apparently a duplicate of A152254. - R. J. Mathar, Jul 12 2019

Examples

			The a(2) = 12 non-nesting digraph edge-sets:
  {}
  {11}
  {12}
  {21}
  {22}
  {11,12}
  {11,21}
  {11,22}
  {12,22}
  {21,22}
  {11,12,22}
  {11,21,22}
		

Crossrefs

Nesting digraphs are A326209.
Non-nesting set partitions are A000108.
Non-capturing set partitions are A054391.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],OrderedQ[Last/@#]&]],{n,4}]

Formula

A002416(n) = a(n) + A326209(n).

A326250 Number of weakly nesting simple graphs with vertices {1..n}.

Original entry on oeis.org

0, 0, 0, 3, 50, 982, 32636, 2096723
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Comments

Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d.

Crossrefs

Non-nesting set partitions are A000108.
Non-crossing graphs are A054726.
Nesting digraphs are A326209.
Crossing graphs are A326210.
MM-numbers of nesting multiset partitions are A326256.

Programs

  • Mathematica
    wnsXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x<=z
    				

Formula

Conjecture: A006125(n) = a(n) + A000108(n).

A326260 MM-numbers of capturing, non-nesting multiset partitions (with empty parts allowed).

Original entry on oeis.org

2599, 4163, 5198, 6463, 6893, 7291, 7797, 8326, 8507, 9131, 9959, 10396, 10649, 11041, 11639, 12489, 12811, 12926, 12995, 13786, 14237, 14582, 14899, 15157, 15594, 16123, 16403, 16652, 17014, 17063, 17089, 17141, 18101, 18193, 18262, 18643, 18659, 19337, 19389
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A set partition is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. It is nesting if it has two blocks of the form {...x,y...} and {...z,t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   2599: {{2,2},{1,2,3}}
   4163: {{2,2},{1,2,4}}
   5198: {{},{2,2},{1,2,3}}
   6463: {{2,2},{1,1,2,3}}
   6893: {{1,2,2},{1,2,3}}
   7291: {{2,2},{1,2,5}}
   7797: {{1},{2,2},{1,2,3}}
   8326: {{},{2,2},{1,2,4}}
   8507: {{2,3},{1,2,4}}
   9131: {{2,2},{1,2,6}}
   9959: {{2,2},{1,1,2,4}}
  10396: {{},{},{2,2},{1,2,3}}
  10649: {{2,2},{1,2,2,3}}
  11041: {{1,2,2},{1,2,4}}
  11639: {{2,2,2},{1,2,3}}
  12489: {{1},{2,2},{1,2,4}}
  12811: {{2,2},{1,2,7}}
  12926: {{},{2,2},{1,1,2,3}}
  12995: {{2},{2,2},{1,2,3}}
  13786: {{},{1,2,2},{1,2,3}}
		

Crossrefs

Non-nesting set partitions are A000108.
Capturing set partitions are A326243.
Capturing, non-nesting set partitions are A326249.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.

Programs

  • Mathematica
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    Select[Range[10000],!nesXQ[primeMS/@primeMS[#]]&&capXQ[primeMS/@primeMS[#]]&]

A326289 a(0) = 0, a(n) = 2^binomial(n,2) - 2^(n - 1).

Original entry on oeis.org

0, 0, 0, 4, 56, 1008, 32736, 2097088, 268435328, 68719476480, 35184372088320, 36028797018962944, 73786976294838204416, 302231454903657293672448, 2475880078570760549798240256, 40564819207303340847894502555648, 1329227995784915872903807060280311808
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2019

Keywords

Comments

Number of simple graphs with vertices {1..n} containing two edges {a,b}, {c,d} that are weakly crossing, meaning a <= c < b <= d or c <= a < d <= b.

Examples

			The a(4) = 56 weakly crossing edge-sets:
  {12,13}  {12,13,14}  {12,13,14,23}  {12,13,14,23,24}  {12,13,14,23,24,34}
  {12,14}  {12,13,23}  {12,13,14,24}  {12,13,14,23,34}
  {12,23}  {12,13,24}  {12,13,14,34}  {12,13,14,24,34}
  {12,24}  {12,13,34}  {12,13,23,24}  {12,13,23,24,34}
  {12,34}  {12,14,23}  {12,13,23,34}  {12,14,23,24,34}
  {13,14}  {12,14,24}  {12,13,24,34}  {13,14,23,24,34}
  {13,23}  {12,14,34}  {12,14,23,24}
  {13,24}  {12,23,24}  {12,14,23,34}
  {13,34}  {12,23,34}  {12,14,24,34}
  {14,24}  {12,24,34}  {12,23,24,34}
  {14,34}  {13,14,23}  {13,14,23,24}
  {23,24}  {13,14,24}  {13,14,23,34}
  {23,34}  {13,14,34}  {13,14,24,34}
  {24,34}  {13,23,24}  {13,23,24,34}
           {13,23,34}  {14,23,24,34}
           {13,24,34}
           {14,23,24}
           {14,23,34}
           {14,24,34}
           {23,24,34}
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,0,2^Binomial[n,2]-2^(n-1)],{n,0,5}]
Showing 1-10 of 11 results. Next