A326254 Duplicate of A054391.
1, 1, 2, 5, 14, 41, 123, 374, 1147, 3538, 10958, 34042, 105997, 330632, 1032781, 3229714, 10109310, 31667245
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 96*x^6 + 267*x^7 + ... a(3) = 5, a(4) = 13; since the top row of M^3 = (5, 5, 2, 1, ...) From _Eric Rowland_, Sep 25 2021: (Start) There are a(4) = 13 directed animals of size 4: O O O O OO O O O O OO O OO O OO OOO O O OO O O OO O O OO OOO O O OO OOO OO OOO OOOO (End) From _Joerg Arndt_, Nov 10 2012: (Start) There are a(4)=13 smooth factorial numbers of length 4 (dots for zeros): [ 1] [ . . . . ] [ 2] [ . . . 1 ] [ 3] [ . . 1 . ] [ 4] [ . . 1 1 ] [ 5] [ . . 1 2 ] [ 6] [ . 1 . . ] [ 7] [ . 1 . 1 ] [ 8] [ . 1 1 . ] [ 9] [ . 1 1 1 ] [10] [ . 1 1 2 ] [11] [ . 1 2 1 ] [12] [ . 1 2 2 ] [13] [ . 1 2 3 ] (End) From _Joerg Arndt_, Nov 22 2012: (Start) There are a(4)=13 base 3 4-digit numbers (not starting with 0) with digit sum 4: [ 1] [ 2 2 . . ] [ 2] [ 2 1 1 . ] [ 3] [ 1 2 1 . ] [ 4] [ 2 . 2 . ] [ 5] [ 1 1 2 . ] [ 6] [ 2 1 . 1 ] [ 7] [ 1 2 . 1 ] [ 8] [ 2 . 1 1 ] [ 9] [ 1 1 1 1 ] [10] [ 1 . 2 1 ] [11] [ 2 . . 2 ] [12] [ 1 1 . 2 ] [13] [ 1 . 1 2 ] (End)
a005773 n = a005773_list !! n a005773_list = 1 : f a001006_list [] where f (x:xs) ys = y : f xs (y : ys) where y = x + sum (zipWith (*) a001006_list ys) -- Reinhard Zumkeller, Mar 30 2012
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2*x/(3*x-1+Sqrt(1-2*x-3*x^2)) )); // G. C. Greubel, Apr 05 2019
seq( sum(binomial(i-1, k)*binomial(i-k, k), k=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001 A005773:=proc(n::integer) local i, j, A, istart, iend, KartProd, Liste, Term, delta; A:=0; for i from 0 to n do Liste[i]:=NULL; istart[i]:=0; iend[i]:=n-i+1: for j from istart[i] to iend[i] do Liste[i]:=Liste[i], j; end do; Liste[i]:=[Liste[i]]: end do; KartProd:=cartprod([seq(Liste[i], i=1..n)]); while not KartProd[finished] do Term:=KartProd[nextvalue](); delta:=1; for i from 1 to n-1 do if (op(i, Term) - op(i+1, Term))^2 >= 2 then delta:=0; break; end if; end do; A:=A+delta; end do; end proc; # Thomas Wieder, Feb 22 2009: # n -> [a(0),a(1),..,a(n)] A005773_list := proc(n) local W, m, j, i; W := proc(i, j, n) option remember; if min(i, j, n) < 0 or max(i, j) > n then 0 elif n = 0 then if i = 0 and j = 0 then 1 else 0 fi else W(i-1,j,n-1)+W(i,j-1,n-1)+W(i+1,j-1,n-1) fi end: [1,seq(add(add(W(i,j,m),i=0..m),j=0..m),m=0..n-1)] end: A005773_list(27); # Peter Luschny, May 21 2011 A005773 := proc(n) option remember; if n <= 1 then 1 ; else 2*n*procname(n-1)+3*(n-2)*procname(n-2) ; %/n ; end if; end proc: seq(A005773(n),n=0..10) ; # R. J. Mathar, Jul 25 2017
CoefficientList[Series[(2x)/(3x-1+Sqrt[1-2x-3x^2]), {x,0,40}], x] (* Harvey P. Dale, Apr 03 2011 *) a[0]=1; a[n_] := Sum[k/n*Sum[Binomial[n, j]*Binomial[j, 2*j-n-k], {j, 0, n}], {k, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *) A005773[n_] := 2 (-1)^(n+1) JacobiP[n - 1, 3, -n -1/2, -7] / (n^2 + n); A005773[0] := 1; Table[A005773[n], {n, 0, 27}] (* Peter Luschny, May 25 2021 *)
a(n)=if(n<2,n>=0,(2*n*a(n-1)+3*(n-2)*a(n-2))/n)
for(n=0, 27, print1(if(n==0, 1, sum(k=0, n-1, (-1)^(n - 1 + k)*binomial(n - 1, k)*binomial(2*k + 1, k + 1))),", ")) \\ Indranil Ghosh, Mar 14 2017
Vec(1/(1-serreverse(x*(1-x)/(1-x^3) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
def da(): a, b, c, d, n = 0, 1, 1, -1, 1 yield 1 yield 1 while True: yield b + (-1)^n*d n += 1 a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1)) c, d = d, (3*(n-1)*c-(2*n-1)*d)//n A005773 = da() print([next(A005773) for in range(28)]) # _Peter Luschny, May 16 2016
(2*x/(3*x-1+sqrt(1-2*x-3*x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 05 2019
The a(5) = 11 capturing set partitions: {{1,2,5},{3,4}} {{1,3,4},{2,5}} {{1,3,5},{2,4}} {{1,4},{2,3,5}} {{1,4,5},{2,3}} {{1,5},{2,3,4}} {{1},{2,5},{3,4}} {{1,4},{2,3},{5}} {{1,5},{2},{3,4}} {{1,5},{2,3},{4}} {{1,5},{2,4},{3}}
The sequence of terms together with their multiset multisystems begins: 667: {{2,2},{1,3}} 989: {{2,2},{1,4}} 1334: {{},{2,2},{1,3}} 1633: {{2,2},{1,1,3}} 1769: {{1,3},{1,2,2}} 1817: {{2,2},{1,5}} 1978: {{},{2,2},{1,4}} 2001: {{1},{2,2},{1,3}} 2021: {{1,4},{2,3}} 2323: {{2,2},{1,6}} 2461: {{2,2},{1,1,4}} 2599: {{2,2},{1,2,3}} 2623: {{1,4},{1,2,2}} 2668: {{},{},{2,2},{1,3}} 2967: {{1},{2,2},{1,4}} 2987: {{1,3},{2,2,2}} 3197: {{2,2},{1,7}} 3266: {{},{2,2},{1,1,3}} 3335: {{2},{2,2},{1,3}} 3538: {{},{1,3},{1,2,2}}
The a(2) = 12 non-nesting digraph edge-sets: {} {11} {12} {21} {22} {11,12} {11,21} {11,22} {12,22} {21,22} {11,12,22} {11,21,22}
Table[Length[Select[Subsets[Tuples[Range[n],2]],OrderedQ[Last/@#]&]],{n,4}]
a(5) = 8 = A000108(5) - A001519(5) = 42 - 34.
with(combinat): seq(binomial(2*n,n)/(n+1)-fibonacci(2*n-1), n=1..27); # Emeric Deutsch, Aug 21 2008
With[{nn=30},#[[1]]-#[[2]]&/@Thread[{CatalanNumber[Range[nn]], Fibonacci[ Range[ 1,2nn,2]]}]] (* Harvey P. Dale, Nov 07 2016 *)
The a(5) = 3 set partitions: {{1,3,4},{2,5}} {{1,3,5},{2,4}} {{1,4},{2,3,5}}
The a(6) = 9 set partitions: {{1},{2,4,6},{3,5}} {{1,3,5},{2,4},{6}} {{1,3,6},{2,4},{5}} {{1,3,6},{2,5},{4}} {{1,4,6},{2},{3,5}} {{1,4,6},{2,5},{3}} {{1,3,5},{2,4,6}} {{1,2,4,6},{3,5}} {{1,3,5,6},{2,4}}
The sequence of terms together with their multiset multisystems begins: 8903: {{1,3},{2,2,4}} 15167: {{1,3},{2,2,5}} 16717: {{2,4},{1,3,3}} 17806: {{},{1,3},{2,2,4}} 18647: {{1,3},{2,2,6}} 20329: {{1,3},{1,2,2,4}} 20453: {{1,2,3},{1,2,4}} 21797: {{1,1,3},{2,2,4}} 22489: {{1,4},{2,2,5}} 25607: {{1,3},{2,2,7}} 26709: {{1},{1,3},{2,2,4}} 27649: {{1,4},{2,2,6}} 29551: {{1,3},{2,2,8}} 30334: {{},{1,3},{2,2,5}} 31373: {{2,5},{1,3,3}} 32741: {{1,3},{2,2,2,4}} 33434: {{},{2,4},{1,3,3}} 34691: {{1,2,3},{2,2,4}} 35177: {{1,3},{1,2,2,5}} 35612: {{},{},{1,3},{2,2,4}}
a(5) = 5: UHHHD, UDUHD, UUDHD, UHDUD, UHUDD. a(6) = 12: UHHHHD, UDUHHD, UUDHHD, UHDUHD, UHUDHD, UHHDUD, UDUDUD, UUDDUD, UHHUDD, UDUUDD, UUDUDD, UUUDDD. G.f. = 1 + x^2 + x^3 + 3*x^4 + 5*x^5 + 12*x^6 + 23*x^7 + 52*x^8 + 105*x^9 + ...
a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 1, 3][n+1], a(n-1)+ (6*(n-3)*a(n-2) -3*(n-5)*a(n-3) -8*(n-4)*a(n-4) -4*(n-4)*a(n-5))/(n-1)) end: seq(a(n), n=0..40);
a[n_] := a[n] = If[n < 5, {1, 0, 1, 1, 3}[[n+1]], a[n-1] + (6*(n-3)*a[n-2] - 3*(n-5)*a[n-3] - 8*(n-4)*a[n-4] - 4*(n-4)*a[n-5])/(n-1)]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Jun 20 2013, translated from Maple *) a[ n_] := SeriesCoefficient[ (2 - 3 x - 2 x^2 + x Sqrt[1 - 4 x^2]) / (2 (1 - x - 2 x^2 - x^3)), {x, 0, n}] (* Michael Somos, Jan 14 2014 *)
{a(n) = if( n<0, 0, polcoeff( (2 - 3*x - 2*x^2 + x * sqrt(1 - 4*x^2 + x * O(x^n)) ) / (2 * (1 - x - 2*x^2 - x^3)), n))} /* Michael Somos, Jan 14 2014 */
Comments