A324174 Integers k such that 2*floor(sqrt(k)) divides k.
2, 4, 8, 12, 16, 24, 30, 36, 48, 56, 64, 80, 90, 100, 120, 132, 144, 168, 182, 196, 224, 240, 256, 288, 306, 324, 360, 380, 400, 440, 462, 484, 528, 552, 576, 624, 650, 676, 728, 756, 784, 840, 870, 900, 960, 992, 1024, 1088, 1122, 1156, 1224, 1260, 1296
Offset: 1
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Programs
-
Mathematica
Select[ Range[ 1000 ], Mod[ #, 2*Floor[ Sqrt[ # ]//N ] ]==0& ] LinearRecurrence[{1,0,2,-2,0,-1,1},{2,4,8,12,16,24,30},70] (* Harvey P. Dale, Dec 11 2022 *)
-
PARI
is(n) = n%(2*sqrtint(n)) == 0;
Formula
For k >= 1, a(3k-2) = 4k^2 - 2k, a(3k-1) = 4k^2 and a(3k) = 4k^2 + 4k.