A324183 a(n) = d(A163511(n)), where d(n) is A000005, the number of divisors of n.
1, 2, 3, 2, 4, 3, 4, 2, 5, 4, 6, 3, 6, 4, 4, 2, 6, 5, 8, 4, 9, 6, 6, 3, 8, 6, 8, 4, 6, 4, 4, 2, 7, 6, 10, 5, 12, 8, 8, 4, 12, 9, 12, 6, 9, 6, 6, 3, 10, 8, 12, 6, 12, 8, 8, 4, 8, 6, 8, 4, 6, 4, 4, 2, 8, 7, 12, 6, 15, 10, 10, 5, 16, 12, 16, 8, 12, 8, 8, 4, 15, 12, 18, 9, 18, 12, 12, 6, 12, 9, 12, 6, 9, 6, 6, 3, 12, 10, 16, 8, 18, 12, 12, 6, 16, 12
Offset: 0
Keywords
Links
Programs
-
PARI
A324183(n) = if(!n,1,n = ((3<<#binary(n\2))-n-1); my(e=0,m=1); while(n>0, if(!(n%2), m *= (1+e); e=0, e++); n >>= 1); (m*(1+e)));
-
PARI
A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p)); A324183(n) = numdiv(A163511(n));
-
PARI
A054429(n) = if(!n,n,((3<<#binary(n\2))-n-1)); \\ After code in A054429 A106737(n) = sum(k=0, n, (binomial(n+k, n-k)*binomial(n, k)) % 2); A324183(n) = A106737(A054429(n));
-
Python
def A324183(n): if n: c = 1 while n: c *= (s:=(~n&n-1).bit_length()+1) n >>= s return c*(s+1)//s return 1 # Chai Wah Wu, Jul 25 2023
Comments