cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324183 a(n) = d(A163511(n)), where d(n) is A000005, the number of divisors of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 4, 2, 5, 4, 6, 3, 6, 4, 4, 2, 6, 5, 8, 4, 9, 6, 6, 3, 8, 6, 8, 4, 6, 4, 4, 2, 7, 6, 10, 5, 12, 8, 8, 4, 12, 9, 12, 6, 9, 6, 6, 3, 10, 8, 12, 6, 12, 8, 8, 4, 8, 6, 8, 4, 6, 4, 4, 2, 8, 7, 12, 6, 15, 10, 10, 5, 16, 12, 16, 8, 12, 8, 8, 4, 15, 12, 18, 9, 18, 12, 12, 6, 12, 9, 12, 6, 9, 6, 6, 3, 12, 10, 16, 8, 18, 12, 12, 6, 16, 12
Offset: 0

Views

Author

Antti Karttunen, Feb 17 2019

Keywords

Comments

For all i, j: A286531(i) = A286531(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    A324183(n) = if(!n,1,n = ((3<<#binary(n\2))-n-1); my(e=0,m=1); while(n>0, if(!(n%2), m *= (1+e); e=0, e++); n >>= 1); (m*(1+e)));
    
  • PARI
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A324183(n) = numdiv(A163511(n));
    
  • PARI
    A054429(n) = if(!n,n,((3<<#binary(n\2))-n-1)); \\ After code in A054429
    A106737(n) = sum(k=0, n, (binomial(n+k, n-k)*binomial(n, k)) % 2);
    A324183(n) = A106737(A054429(n));
    
  • Python
    def A324183(n):
        if n:
            c = 1
            while n:
                c *= (s:=(~n&n-1).bit_length()+1)
                n >>= s
            return c*(s+1)//s
        return 1 # Chai Wah Wu, Jul 25 2023

Formula

a(n) = A000005(A163511(n)).
a(n) = A106737(A054429(n)).
For all n >= 0, a(2^n) = n+2.