A324210 Squarefree numbers k such that the sum of the distinct prime factors of k is twice the difference between the largest and the smallest prime factors of k.
110, 182, 374, 494, 782, 1334, 2294, 3182, 3854, 4982, 6254, 7905, 7917, 8174, 9782, 11534, 12765, 14774, 15810, 15834, 18705, 19982, 20757, 21614, 22330, 22454, 24182, 25530, 27265, 28210, 30381, 30597, 32637, 35894, 37410, 40205, 41181, 41514, 43005, 47414, 49210
Offset: 1
Keywords
Examples
110 = 2 * 5 * 11 is squarefree. The minimal and maximal prime divisors of 110 are 2 and 11 respectively. Twice their difference is 2 * (11-2) = 18 which is also the sum of the distinct prime divisors of 110; 2 + 5 + 11 = 18.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local P; if not numtheory:-issqrfree(n) then return false fi; P:= numtheory:-factorset(n); convert(P, `+`) = 2*(max(P)-min(P)) end proc: select(filter, [$1..50000]);# Robert Israel, Apr 09 2019
-
Mathematica
Select[Select[Range[2, 5*10^4], SquareFreeQ], Total@ # == 2 (Last@ # - First@ #) &@ FactorInteger[#][[All, 1]] &] (* Michael De Vlieger, Apr 11 2019 *)
-
PARI
is(n) = if(!issquarefree(n), return(0)); my(f=factor(n)[, 1]~); sum(i=1, #f, f[i])==2*(f[#f]-f[1]) forcomposite(c=1, 50000, if(is(c), print1(c, ", "))) \\ Felix Fröhlich, Apr 11 2019
Comments