A263296 Triangle read by rows: T(n,k) is the number of graphs with n vertices with edge connectivity k.
1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 10, 8, 2, 1, 44, 52, 41, 15, 3, 1, 191, 351, 352, 121, 25, 3, 1, 1229, 3714, 4820, 2159, 378, 41, 4, 1, 13588, 63638, 113256, 68715, 14306, 1095, 65, 4, 1, 288597, 1912203, 4602039, 3952378, 1141575, 104829, 3441, 100, 5, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 1, 1; 5, 3, 2, 1; 13, 10, 8, 2, 1; 44, 52, 41, 15, 3, 1; 191, 351, 352, 121, 25, 3, 1; 1229, 3714, 4820, 2159, 378, 41, 4, 1; ...
Links
- Georg Grasegger, Table of n, a(n) for n = 1..78 (rows 1..12)
- FindStat - Combinatorial Statistic Finder, The edge connectivity of a graph.
- Jens M. Schmidt, Combinatorial Data
- Gus Wiseman, Unlabeled graphs with 5 vertices organized by spanning edge-connectivity (isolated vertices not shown).
Crossrefs
Row sums give A000088, n >= 1.
Columns k=0..10 are A000719, A052446, A052447, A052448, A241703, A241704, A241705, A324096, A324097, A324098, A324099.
Number of graphs with edge connectivity at least k for k=1..10 are A001349, A007146, A324226, A324227, A324228, A324229, A324230, A324231, A324232, A324233.
The labeled version is A327069.
Extensions
a(22)-a(55) added by Andrew Howroyd, Aug 11 2019
Comments