A324267 a(n) = 11*7^(5*n).
11, 184877, 3107227739, 52223176609373, 877714929273732011, 14751754816303613908877, 247932743197614838966495739, 4167005614922312598509893885373, 70034863369999307843155786531464011, 1177075948659578366919919304234315632877, 19783115469121533612823083746266142841763739
Offset: 0
Examples
For a(0) = 11 and A324266(0) = 2, 11^2 + 7 = 128 = 4*2^5.
Links
- K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
- Index entries for linear recurrences with constant coefficients, signature (16807).
Programs
-
GAP
List([0..20], n->11*16807*n);
-
Magma
[11*16807^n: n in [0..20]];
-
Maple
a:=n->11*16807^n: seq(a(n), n=0..20);
-
Mathematica
11*16807^Range[0,20]
-
PARI
a(n) = 11*16807^n;
Formula
a(n) = 11*16807^n.
O.g.f.: 11/(1 - 16807*x).
E.g.f.: 11*exp(16807*x).
a(n) = 16807*a(n-1) for n > 0.
a(n) = 11*((7/2)*A109808(n))^5.
Comments