A324315 Squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p.
231, 561, 1001, 1045, 1105, 1122, 1155, 1729, 2002, 2093, 2145, 2465, 2821, 3003, 3315, 3458, 3553, 3570, 3655, 3927, 4186, 4199, 4522, 4774, 4845, 4862, 5005, 5187, 5565, 5642, 5681, 6006, 6118, 6270, 6279, 6545, 6601, 6670, 6734, 7337, 7395, 7735, 8177, 8211, 8265, 8294, 8323, 8463, 8645, 8789, 8855, 8911, 9282, 9361, 9435, 9690, 9867
Offset: 1
Examples
231 = 3 * 7 * 11 is squarefree, and 231 in base 3 is 22120_3 = 2 * 3^4 + 2 * 3^3 + 1 * 3^2 + 2 * 3 + 0 with 2+2+1+2+0 = 7 >= 3, and 231 = 450_7 with 4+5+0 = 9 >= 7, and 231 = 1a0_11 with 1+a+0 = 1+10+0 = 11 >= 11, so 231 is a member.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, #A52 Integers 21 (2021), 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Crossrefs
Programs
-
Mathematica
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; LP[n_] := Transpose[FactorInteger[n]][[1]]; TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &]; Select[Range[10^4], TestS[#] &]
-
Python
from sympy import factorint from sympy.ntheory import digits def ok(n): pf = factorint(n) if n < 2 or max(pf.values()) > 1: return False return all(sum(digits(n, p)[1:]) >= p for p in pf) print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Jul 03 2022
Formula
a_1 + a_2 + ... + a_k >= p for m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0).
Comments