cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A324319 Terms of A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) that are also hexagonal numbers (A000384) with index equal to their largest prime factor.

Original entry on oeis.org

231, 561, 3655, 5565, 8911, 10585, 13695, 23653, 32131, 45451, 59685, 74305, 108345, 115921, 157641, 243253, 248865, 302253, 314821, 334153, 371091, 392055, 417241, 458403, 505515, 546535, 688551, 702705, 795691, 821121, 915981, 932295, 1004653, 1145341, 1181953
Offset: 1

Views

Author

Keywords

Comments

561, 8911, and 10585 are also Carmichael numbers (A002997).
The smallest primary Carmichael number (A324316) in the sequence is 8801128801 = 181 * 733 * 66337 = A000384(66337).
See the section on polygonal numbers in Kellner and Sondow 2019.
Subsequence of the special polygonal numbers A324973. - Jonathan Sondow, Mar 27 2019

Examples

			A324315(1) = 231 = 3 * 7 * 11 = 11 * (2 * 11 - 1) = A000384(11), so 231 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    HN[n_] := n(2n - 1);
    TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &];
    Select[HN@ Prime[Range[100]], TestS[#] &]

Extensions

More terms from Amiram Eldar, Dec 05 2020

A324320 Terms of A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) that are also octagonal numbers (A000567) with index equal to their largest prime factor.

Original entry on oeis.org

1045, 2465, 2821, 15841, 20501, 34133, 51221, 68101, 89441, 116033, 118405, 162401, 170885, 216545, 300833, 364705, 439301, 472033, 530881, 642181, 687365, 746005, 970145, 976981, 997633, 1104133, 1148245, 1193221, 1231361, 1239061, 1398101, 1654661, 1971541
Offset: 1

Views

Author

Keywords

Comments

2465 is also a Carmichael number (A002997).
2821 is also a primary Carmichael number (A324316).
See the section on polygonal numbers in Kellner and Sondow 2019.
Subsequence of the special polygonal numbers A324973. - Jonathan Sondow, Mar 27 2019

Examples

			A324315(4) = 1045 = 5 * 11 * 19 = 19 * (3 * 19 - 2) = A000567(19), so 1045 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    ON[n_] := n(3n - 2);
    TestS[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # &];
    Select[ON@ Prime[Range[100]], TestS[#] &]

Extensions

More terms from Amiram Eldar, Dec 05 2020

A324318 Number of terms in A324315 (squarefree integers m > 1 such that if prime p divides m, then the sum of the base p digits of m is at least p) less than 10^n.

Original entry on oeis.org

0, 0, 2, 57, 636, 7048, 75150, 801931, 8350039, 86361487
Offset: 1

Views

Author

Keywords

Comments

The number of squarefree integers less than 10^n is 0, 6, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, ... (see A053462).

Examples

			There are two terms of A324315 less than 10^3, namely, 231 and 561, so a(3) = 2.
		

Crossrefs

A002997 Carmichael numbers: composite numbers k such that a^(k-1) == 1 (mod k) for every a coprime to k.

Original entry on oeis.org

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461, 530881, 552721
Offset: 1

Views

Author

Keywords

Comments

V. Šimerka found the first 7 terms of this sequence 25 years before Carmichael (see the link and also the remark of K. Conrad). - Peter Luschny, Apr 01 2019
k is composite and squarefree and for p prime, p|k => p-1|k-1.
An odd composite number k is a pseudoprime to base a iff a^(k-1) == 1 (mod k). A Carmichael number is an odd composite number k which is a pseudoprime to base a for every number a prime to k.
A composite odd number k is a Carmichael number if and only if k is squarefree and p-1 divides k-1 for every prime p dividing k. (Korselt, 1899)
Ghatage and Scott prove using Fermat's little theorem that (a+b)^k == a^k + b^k (mod k) (the freshman's dream) exactly when k is a prime (A000040) or a Carmichael number. - Jonathan Vos Post, Aug 31 2005
Alford et al. have constructed a Carmichael number with 10333229505 prime factors, and have also constructed Carmichael numbers with m prime factors for every m between 3 and 19565220. - Jonathan Vos Post, Apr 01 2012
Thomas Wright proved that for any numbers b and M in N with gcd(b,M) = 1, there are infinitely many Carmichael numbers k such that k == b (mod M). - Jonathan Vos Post, Dec 27 2012
Composite numbers k relatively prime to 1^(k-1) + 2^(k-1) + ... + (k-1)^(k-1). - Thomas Ordowski, Oct 09 2013
Composite numbers k such that A063994(k) = A000010(k). - Thomas Ordowski, Dec 17 2013
Odd composite numbers k such that k divides A002445((k-1)/2). - Robert Israel, Oct 02 2015
If k is a Carmichael number and gcd(b-1,k)=1, then (b^k-1)/(b-1) is a pseudoprime to base b by Steuerwald's theorem; see the reference in A005935. - Thomas Ordowski, Apr 17 2016
Composite numbers k such that p^k == p (mod k) for every prime p <= A285512(k). - Max Alekseyev and Thomas Ordowski, Apr 20 2017
If a composite m < A285549(n) and p^m == p (mod m) for every prime p <= prime(n), then m is a Carmichael number. - Thomas Ordowski, Apr 23 2017
The sequence of all Carmichael numbers can be defined as follows: a(1) = 561, a(n+1) = smallest composite k > a(n) such that p^k == p (mod k) for every prime p <= n+2. - Thomas Ordowski, Apr 24 2017
An integer m > 1 is a Carmichael number if and only if m is squarefree and each of its prime divisors p satisfies both s_p(m) >= p and s_p(m) == 1 (mod p-1), where s_p(m) is the sum of the base-p digits of m. Then m is odd and has at least three prime factors. For each prime factor p, the sharp bound p <= a*sqrt(m) holds with a = sqrt(17/33) = 0.7177.... See Kellner and Sondow 2019. - Bernd C. Kellner and Jonathan Sondow, Mar 03 2019
Carmichael numbers are special polygonal numbers A324973. The rank of the n-th Carmichael number is A324975(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019
An odd composite number m is a Carmichael number iff m divides denominator(Bernoulli(m-1)). The quotient is A324977. See Pomerance, Selfridge, & Wagstaff, p. 1006, and Kellner & Sondow, section on Bernoulli numbers. - Jonathan Sondow, Mar 28 2019
This is setwise difference A324050 \ A008578. Many of the same identities apply also to A324050. - Antti Karttunen, Apr 22 2019
If k is a Carmichael number, then A309132(k) = A326690(k). The proof generalizes that of Theorem in A309132. - Jonathan Sondow, Jul 19 2019
Composite numbers k such that A111076(k)^(k-1) == 1 (mod k). Proof: the multiplicative order of A111076(k) mod k is equal to lambda(k), where lambda(k) = A002322(k), so lambda(k) divides k-1, qed. - Thomas Ordowski, Nov 14 2019
For all positive integers m, m^k - m is divisible by k, for all k > 1, iff k is either a Carmichael number or a prime, as is used in the proof by induction for Fermat's Little Theorem. Also related are A182816 and A121707. - Richard R. Forberg, Jul 18 2020
From Amiram Eldar, Dec 04 2020, Apr 21 2024: (Start)
Ore (1948) called these numbers "Numbers with the Fermat property", or, for short, "F numbers".
Also called "absolute pseudoprimes". According to Erdős (1949) this term was coined by D. H. Lehmer.
Named by Beeger (1950) after the American mathematician Robert Daniel Carmichael (1879 - 1967). (End)
For ending digit 1,3,5,7,9 through the first 10000 terms, we see 80.3, 4.1, 7.4, 3.8 and 4.3% apportionment respectively. Why the bias towards ending digit "1"? - Bill McEachen, Jul 16 2021
It seems that for any m > 1, the remainders of Carmichael numbers modulo m are biased towards 1. The number of terms congruent to 1 modulo 4, 6, 8, ..., 24 among the first 10000 terms: 9827, 9854, 8652, 8034, 9682, 5685, 6798, 7820, 7880, 3378 and 8518. - Jianing Song, Nov 08 2021
Alford, Granville and Pomerance conjectured in their 1994 paper that a statement analogous to Bertrand's Postulate could be applied to Carmichael numbers. This has now been proved by Daniel Larsen, see link below. - David James Sycamore, Jan 17 2023

References

  • N. G. W. H. Beeger, On composite numbers n for which a^n == 1 (mod n) for every a prime to n, Scripta Mathematica, Vol. 16 (1950), pp. 133-135.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover Publications, Inc. New York, 1966, Table 18, Page 44.
  • David M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 142.
  • CRC Standard Mathematical Tables and Formulae, 30th ed., 1996, p. 87.
  • Richard K. Guy, Unsolved Problems in Number Theory, A13.
  • Øystein Ore, Number Theory and Its History, McGraw-Hill, 1948, Reprinted by Dover Publications, 1988, Chapter 14.
  • Paul Poulet, Tables des nombres composés vérifiant le théorème du Fermat pour le module 2 jusqu'à 100.000.000, Sphinx (Brussels), 8 (1938), 42-45.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22, 100-103.
  • Wacław Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 145-146.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 561 at p. 157.

Crossrefs

Programs

  • Haskell
    a002997 n = a002997_list !! (n-1)
    a002997_list = [x | x <- a024556_list,
    all (== 0) $ map ((mod (x - 1)) . (subtract 1)) $ a027748_row x]
    -- Reinhard Zumkeller, Apr 12 2012
    
  • Magma
    [n: n in [3..53*10^4 by 2] | not IsPrime(n) and n mod CarmichaelLambda(n) eq 1]; // Bruno Berselli, Apr 23 2012
    
  • Maple
    filter:= proc(n)
      local q;
      if isprime(n) then return false fi;
      if 2 &^ (n-1) mod n <> 1 then return false fi;
      if not numtheory:-issqrfree(n) then return false fi;
      for q in numtheory:-factorset(n) do
        if (n-1) mod (q-1) <> 0 then return false fi
      od:
      true;
    end proc:
    select(filter, [seq(2*k+1,k=1..10^6)]); # Robert Israel, Dec 29 2014
    isA002997 := n -> 0 = modp(n-1, numtheory:-lambda(n)) and not isprime(n) and n <> 1:
    select(isA002997, [$1..10000]); # Peter Luschny, Jul 21 2019
  • Mathematica
    Cases[Range[1,100000,2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! PrimeQ[n]] (* Artur Jasinski, Apr 05 2008; minor edit from Zak Seidov, Feb 16 2011 *)
    Select[Range[1,600001,2],CompositeQ[#]&&Mod[#,CarmichaelLambda[#]]==1&] (* Harvey P. Dale, Jul 08 2023 *)
  • PARI
    Korselt(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1 \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    is_A002997(n, F=factor(n)~)={ #F>2 && !foreach(F,f,(n%(f[1]-1)==1 && f[2]==1) || return)} \\ No need to check parity: if efficiency is needed, scan only odd numbers. - M. F. Hasler, Aug 24 2012, edited Mar 24 2022
    
  • Python
    from itertools import islice
    from sympy import nextprime, factorint
    def A002997_gen(): # generator of terms
        p, q = 3, 5
        while True:
            for n in range(p+2,q,2):
                f = factorint(n)
                if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f):
                    yield n
            p, q = q, nextprime(q)
    A002997_list = list(islice(A002997_gen(),20)) # Chai Wah Wu, May 11 2022
  • Sage
    def isCarmichael(n):
        if n == 1 or is_even(n) or is_prime(n):
            return False
        factors = factor(n)
        for f in factors:
            if f[1] > 1: return False
            if (n - 1) % (f[0] - 1) != 0:
                return False
        return True
    print([n for n in (1..20000) if isCarmichael(n)]) # Peter Luschny, Apr 02 2019
    

Formula

Sum_{n>=1} 1/a(n) is in the interval (0.004706, 27.8724) (Bayless and Kinlaw, 2017). The upper bound was reduced to 0.0058 by Kinlaw (2023). - Amiram Eldar, Oct 26 2020, Feb 24 2024

Extensions

Links for lists of Carmichael numbers updated by Jan Kristian Haugland, Mar 25 2009 and Danny Rorabaugh, May 05 2017

A324370 Product of all primes p not dividing n such that the sum of the base-p digits of n is at least p, or 1 if no such prime exists.

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 6, 3, 10, 1, 6, 1, 210, 15, 2, 3, 30, 5, 210, 21, 110, 15, 30, 5, 546, 21, 14, 1, 30, 1, 462, 231, 1190, 105, 6, 1, 51870, 1365, 70, 21, 2310, 55, 2310, 105, 322, 105, 210, 35, 6630, 663, 286, 33, 330, 55, 798, 57, 290, 15, 30, 1, 930930, 15015, 1430, 2145, 1122, 85, 82110, 2415, 70, 3, 330, 55, 21111090, 285285
Offset: 1

Views

Author

Keywords

Comments

The product is finite, as the sum of the base-p digits of n is n if p > n.
a(198) = 2465 is the only term below 10^6 that is a Carmichael number (A002997).
It appears that a(n)=1 if and only if n is in A094960. - Robert Israel, Mar 30 2020
It turns out that a(n) equals the denominator of the first derivative of the Bernoulli polynomial B(n,x). So a(n)=1 if and only if n is in A094960, also impyling that n+1 is prime. A324370 is also involved in such formulas regarding higher derivatives. See Kellner 2023. - Bernd C. Kellner, Oct 12 2023

Examples

			For p = 2, 3, and 5, the sum of the base p digits of 7 is 1+1+1 = 3 >= 2, 2+1 = 3 >= 3, and 1+2 = 3 < 5, respectively, so a(7) = 2*3 = 6.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N,1):
    p:= 1:
    for iter from 1 do
       p:= nextprime(p);
       if p >= N then break fi;
       for n from p+1 to N do
         if n mod p <> 0 and convert(convert(n,base,p),`+`)>= p then
           V[n]:= V[n]*p
         fi
    od od:
    convert(V,list); # Robert Israel, Mar 30 2020
    # Alternatively, note that this formula is suggesting offset 0 and a(0) = 1:
    seq(denom(diff(bernoulli(n, x), x)), n = 1..51); # Peter Luschny, Oct 13 2023
  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    DD2[n_] := Times @@ Select[Prime[Range[PrimePi[(n+1)/(2+Mod[n+1, 2])]]], !Divisible[n, #] && SD[n, #] >= # &];
    Table[DD2[n], {n, 1, 100}]
    (* From Bernd C. Kellner, Oct 12 2023 (Start) *)
    (* Denominator of first derivative of BP *)
    k = 1; Table[Denominator[Together[D[BernoulliB[n, x], {x, k}]]], {n, 1, 100}]
    (* End *)
  • Python
    from math import prod
    from sympy.ntheory import digits
    from sympy import primefactors, primerange
    def a(n):
        nonpf = set(primerange(1, n+1)) - set(primefactors(n))
        return prod(p for p in nonpf if sum(digits(n, p)[1:]) >= p)
    print([a(n) for n in range(1, 75)]) # Michael S. Branicky, Jul 03 2022

Formula

a(n) * A324369(n) = A195441(n-1) = denominator(Bernoulli_n(x) - Bernoulli_n).
a(n) * A324369(n) * A324371(n) = A144845(n-1) = denominator(Bernoulli_{n-1}(x)).
a(n+1) = A195441(n)/A324369(n+1) = A144845(n)/A007947(n+1) = A318256(n). Essentially the same as A318256. - Peter Luschny, Mar 05 2019
From Bernd C. Kellner, Oct 12 2023: (Start)
a(n) = denominator(Bernoulli_n(x)').
k-th derivative: let (n)_m be the falling factorial.
For n > k, a(n-k+1)/gcd(a(n-k+1), (n)_{k-1}) = denominator(Bernoulli_n(x)^(k)). Otherwise, the denominator equals 1. (End)

A324316 Primary Carmichael numbers.

Original entry on oeis.org

1729, 2821, 29341, 46657, 252601, 294409, 399001, 488881, 512461, 1152271, 1193221, 1857241, 3828001, 4335241, 5968873, 6189121, 6733693, 6868261, 7519441, 10024561, 10267951, 10606681, 14469841, 14676481, 15247621, 15829633, 17098369, 17236801, 17316001, 19384289, 23382529, 29111881, 31405501, 34657141, 35703361, 37964809
Offset: 1

Views

Author

Keywords

Comments

Squarefree integers m > 1 such that if prime p divides m, then the sum of the base-p digits of m equals p. It follows that m is then a Carmichael number (A002997).
Dickson's conjecture implies that the sequence is infinite, see Kellner 2019.
If m is a term and p is a prime factor of m, then p <= a*sqrt(m) with a = sqrt(66337/132673) = 0.7071..., where the bound is sharp.
The distribution of primary Carmichael numbers is A324317.
See Kellner and Sondow 2019 and Kellner 2019.
Primary Carmichael numbers are special polygonal numbers A324973. The rank of the n-th primary Carmichael number is A324976(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019
The first term is the Hardy-Ramanujan number. - Omar E. Pol, Jan 09 2020

Examples

			1729 = 7 * 13 * 19 is squarefree, and 1729 in base 7 is 5020_7 = 5 * 7^3 + 0 * 7^2 + 2 * 7 + 0 with 5+0+2+0 = 7, and 1729 in base 13 is a30_13 with a+3+0 = 10+3+0 = 13, and 1729 in base 19 is 4f0_19 with 4+f+0 = 4+15+0 = 19, so 1729 is a member.
		

Crossrefs

Subsequence of A002997, A324315.
Least primary Carmichael number with n prime factors is A306657.

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &];
    Select[Range[1, 10^7, 2], TestCP[#] &]
  • Perl
    use ntheory ":all"; my $m; forsquarefree { $m=$; say if @ > 2 && is_carmichael($m) && vecall { $ == vecsum(todigits($m,$)) } @; } 1e7; # _Dana Jacobsen, Mar 28 2019
    
  • Python
    from sympy import factorint
    from sympy.ntheory import digits
    def ok(n):
        pf = factorint(n)
        if n < 2 or max(pf.values()) > 1: return False
        return all(sum(digits(n, p)[1:]) == p for p in pf)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 03 2022

Formula

a_1 + a_2 + ... + a_k = p if p is prime and m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0).

A324369 Product of all primes p dividing n such that the sum of the base p digits of n is at least p, or 1 if no such prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 15, 2, 1, 6, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 3, 1, 5, 6, 1, 2, 3, 10, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 5, 2, 3, 2, 1, 10, 7, 2, 3, 2, 5, 6, 1
Offset: 1

Views

Author

Keywords

Comments

a(n) = n iff n divides denominator(Bernoulli_n(x) - Bernoulli_n) (see A195441).
a(n) = n iff n = 1 or n is in A324315.
a(n) = n if n is a Carmichael number (A002997).
See the section on Bernoulli polynomials in Kellner and Sondow 2019.

Examples

			6 = 2 * 3, and 6 = 110_2 in base 2 with 1+1+0 >= 2, but 6 = 20_3 in base 3 with 2+0 = 2 < 3, so a(6) = 2.
		

Crossrefs

Programs

  • Maple
    g:= proc(n,p) convert(convert(n,base,p),`+`) >= p end proc:
    f:= proc(n) local p;
          convert(select(p -> g(n,p), numtheory:-factorset(n)),`*`)
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 28 2019
  • Mathematica
    SD[n_, p_] := If[n < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    DD1[n_] := Times @@ Select[LP[n], SD[n, #] >= # &];
    Table[DD1[n], {n, 1, 100}]
  • Python
    from math import prod
    from sympy.ntheory import digits
    from sympy import primefactors as pf
    def a(n): return prod(p for p in pf(n) if sum(digits(n, p)[1:]) >= p)
    print([a(n) for n in range(1, 98)]) # Michael S. Branicky, Jul 03 2022

Formula

a(n) * A324371(n) = A007947(n) = radical(n).
a(n) * A324370(n) = A195441(n-1) = denominator(Bernoulli_n(x) - Bernoulli_n).
a(n) * A324370(n) * A324371(n) = A144845(n-1) = denominator(Bernoulli_{n-1}(x)).

A324371 Product of all primes p dividing n such that the sum of the base p digits of n is less than p, or 1 if no such prime.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 1, 5, 13, 3, 7, 29, 15, 31, 2, 11, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 1, 23, 47, 1, 7, 5, 17, 13, 53, 3, 55, 7, 19, 29, 59, 5, 61, 31, 7, 2, 13, 11, 67, 17, 23, 7, 71, 1, 73, 37, 5, 19, 77, 13, 79, 5, 3, 41, 83, 21
Offset: 1

Views

Author

Keywords

Comments

Does not contain any elements of A324315, and thus none of the Carmichael numbers A002997.
See the section on Bernoulli polynomials in Kellner and Sondow 2019.

Examples

			For p = 2 and 3, the sum of the base p digits of 6 is 1+1+0 = 2 >= 2 and 2+0 = 2 < 3, respectively, so a(6) = 3.
		

Crossrefs

Programs

  • Maple
    f:= n -> convert(select(p -> convert(convert(n,base,p),`+`)Robert Israel, Apr 26 2020
  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    DD3[n_] := Times @@ Select[LP[n], SD[n, #] < # &];
    Table[DD3[n], {n, 1, 100}]
  • Python
    from math import prod
    from sympy.ntheory import digits
    from sympy import primefactors as pf
    def a(n): return prod(p for p in pf(n) if sum(digits(n, p)[1:]) < p)
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Jul 03 2022

Formula

a(n) * A324369(n) = A007947(n) = radical(n).
a(n) * A195441(n) = a(n) * A324369(n) * A324370(n) = A144845(n-1) = denominator(Bernoulli_{n-1}(x)).

A324404 Squarefree integers m > 1 such that if prime p divides m, then s_p(m) >= p and s_p(m) == 2 (mod p-1), where s_p(m) is the sum of the base p digits of m.

Original entry on oeis.org

1122, 3458, 5642, 6734, 11102, 13202, 17390, 17822, 21170, 22610, 27962, 31682, 46002, 58682, 61778, 79730, 82082, 93314, 105266, 106262, 125490, 127946, 136202, 150722, 153254, 177122, 182002, 202202, 203870, 214370, 231842, 252434, 274298, 278462, 305102, 315282
Offset: 1

Views

Author

Keywords

Comments

For d >= 1 define S_d = (terms m in A324315 such that s_p(m) == d (mod p-1) if prime p divides m). Then S_1 is precisely the Carmichael numbers (A002997), S_2 is A324404, S_3 is A324405, and the union of all S_d for d >= 1 is A324315.
Subsequence of the 2-Knödel numbers (A050990). Generally, for d > 1 the terms of S_d that are greater than d form a subsequence of the d-Knödel numbers.
See Kellner and Sondow 2019.

Examples

			1122 = 2*3*11*17 is squarefree and equals 10001100010_2, 1112120_3, 930_11, and 3f0_17 in base p = 2, 3, 11, and 17. Then s_2(1122) = 1+1+1+1 = 4 >= 2, s_3(1122) = 1+1+1+2+1+2 = 8 >= 3, s_11(1122) = 9+3 = 12 >= 11, and s_17(1122) = 3+f = 3+15 = 18 >= 17. Also, s_2(1122) = 4 == 2 (mod 1), s_3(1122) = 8 == 2 (mod 2), s_11(1122) = 12 == 2 (mod 10), and s_17(1122) = 18 == 2 (mod 16), so 1122 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestSd[n_, d_] := (n > 1) && (d > 0) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # && Mod[SD[n, #] - d, # - 1] == 0 &];
    Select[Range[200000], TestSd[#, 2] &]

Extensions

More terms from Amiram Eldar, Dec 05 2020

A324405 Squarefree integers m > 1 such that if prime p divides m, then s_p(m) >= p and s_p(m) == 3 (mod p-1), where s_p(m) is the sum of the base p digits of m.

Original entry on oeis.org

3003, 3315, 5187, 7395, 8463, 14763, 19803, 26733, 31755, 47523, 50963, 58035, 62403, 88023, 105339, 106113, 123123, 139971, 152643, 157899, 166611, 178923, 183183, 191919
Offset: 1

Views

Author

Keywords

Comments

For d >= 1 define S_d = (terms m in A324315 such that s_p(m) == d (mod p-1) if prime p divides m). Then S_1 is precisely the Carmichael numbers (A002997), S_2 is A324404, S_3 is A324405, and the union of all S_d for d >= 1 is A324315.
Subsequence of the 3-Knödel numbers (A033553). Generally, for d > 1 the terms of S_d that are greater than d form a subsequence of the d-Knödel numbers.
See Kellner and Sondow 2019.

Examples

			3003 = 3*7*11*13 is squarefree and equals 11010020_3, 11520_7, 2290_11, and 14a0_13 in base p = 3, 7, 11, and 13. Then s_3(3003) = 1+1+1+2 = 5 >= 3, s_7(3003) = 1+1+5+2 = 9 >= 7, s_11(3003) = 2+2+9 = 13 >= 11, and s_13(3003) = 1+4+a = 1+4+10 = 15 >= 13. Also, s_3(3003) = 5 == 3 (mod 2), s_7(3003) = 9 == 3 (mod 6), s_11(3003) = 13 == 3 (mod 10), and s_13(3003) = 15 == 3 (mod 12), so 3003 is a member.
		

Crossrefs

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestSd[n_, d_] := (n > 1) && (d > 0) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] >= # && Mod[SD[n, #] - d, # - 1] == 0 &];
    Select[Range[200000], TestSd[#, 3] &]
Showing 1-10 of 14 results. Next